
15-150

Principles of Functional Programming

Slides for Lecture 1

Introduction, Philosophy, Some Basics
January 14, 2025

15-150

Principles of Functional Programming
Michael Erdmann Dilsun Kaynar

Aileen Guo, Andrew Lam, Jacky Gao, Kiera O'Flynn

Alan Abraham, Alex Xu, Alice Tran, Anna Gu, Isaac Li,
Annie Zhang, Brandon Dong, Caroline Shi, Ivy Li,

Daniel Brown, Daniel Ragazzo, Emma Tong, Eric Xu,
Ethan Huang, Janise Kim, Madison Zhao, Nia Robinson,

Stephen Mao, Ting Chen, Xiao Yuan, Nathan Porter,
Jerry Song, Rong Yuan, Megan Han, Lillian Yu, Amy Ma,
Alison Ding, Eric Feng, Alex Willoughby, Chenyun Yang,
Owen Lalis, Rachel Du, Meera Pradeepan, Annie Wang,

Monica Wan, Andrew Zhou, Elijah Rosen, Xavier Lien

How to Succeed in College

SHOW UP

How to Succeed in College

SHOW UP

Go to lecture, go to lab.

Do not expect to understand everything in real-time.

Repeated exposure is important.

How to Succeed in College

Take Notes

By writing.

The eye-hand-brain loop is magical.

How to Succeed in College

Study Your Notes

How to Succeed in College

The same day. And again.

Study Your Notes

And again. And again.

Figure out what you don’t understand.

Repeated exposure is important.

How to Succeed in College

Keep up

Do not let work pile up.

Small steps, big achievements.

How to Succeed in College

SHOW UP

Take Notes

Study Your Notes

Keep up

Course Webpage

http://www.cs.cmu.edu/~15150/

Policies: http://www.cs.cmu.edu/~15150/policy.html

Lectures: http://www.cs.cmu.edu/~15150/lect.html

http://www.cs.cmu.edu/~15150/
http://www.cs.cmu.edu/~15150/policy.html
http://www.cs.cmu.edu/~15150/lect.html

Parallelism
/\

< 1, 0, 0, 1, 1 > 3,
< 1, 0, 1, 1, 0 > 3,
< 1, 1, 1, 0, 1 > 4,
< 0, 1, 1, 0, 0 > 2,

\/
↓
12

Parallelism

sum : int sequence → int
type row = int sequence
type room = row sequence

fun count (class : room) : int =
sum (map sum class)

Parallelism
• Work:

• Sequential Computation
• Total sequential time;

number of operations

• Span:
• Parallel Computation
• How long would it take if one could have as

many processors as one wants;
length of longest critical path

Three Recent Theses

• August 2022, Efficient and Scalable Parallel

Functional Programming Through Disentanglement,
by Sam Westrick, advised by Umut Acar.

• June 2022, Deductive Verification for Ordinary
Differential Equations: Safety, Liveness, and Stability,
by Yong Kiam Tan, advised by André Platzer.

• October 2021, First Steps in Synthetic Tait
Computability: The Objective Metatheory of Cubical
Type Theory, by Jonathan Sterling, advised by
Robert Harper.

Types

An expression is well-typed if it has a type,
and ill-typed otherwise.

(The phrase ‘to type-check e’ means to decide whether e is well-typed.
The phrase ‘e type-checks’ means e is well-typed.)

(SML makes this prediction before evaluating the expression.
Evaluation may ultimately produce a value of that type,

but could alternatively raise an exception or loop forever.)

A type is a prediction about the kind of value an
expression must have if it winds up reducing to a value.

Important: SML never evaluates an

ill-typed expression.

Given an expression e:

First,
SML determines whether e is well-typed.

If expression e is well-typed,
then SML evaluates expression e;
otherwise, SML reports a type error.

n,
with n the sum of the
integer values n and n .1 2

Example of a well-typed

expression with no value

5 div 0 : int

Extensional Equivalence

=~

An equivalence relation on expressions
(of the same type).

• Expressions are extensionally equivalent if they
have the same type and one of the following is true:

both expressions reduce to the same value,

or both expressions raise the same exception,

or both expressions loop forever.

• Functions are extensionally equivalent if they map equivalent
arguments to equivalent results.

• In proofs, we use as shorthand for “is equivalent to”.

• Examples:

• Functional programs are referentially transparent, meaning:
– The value of an expression depends only on the values of its sub-expressions.
– The type of an expression depends only on the types of its sub-expressions.

21 + 21 42 6 ∗ 7
[2, 7, 6] [1+1, 2+5, 3+3]
(fn x => x + x) (fn y => 2 ∗ y)

Extensional Equivalence

=~

=~
=~ =~

=~

• Expressions are extensionally equivalent if they
have the same type and one of the following is true:

both expressions reduce to equivalent values,

or both expressions raise equivalent exceptions,

or both expressions loop forever.

• Functions are extensionally equivalent if they map equivalent
arguments to equivalent results.

• In proofs, we use as shorthand for “is equivalent to”.

• Examples:

• Functional programs are referentially transparent, meaning:
– The value of an expression depends only on the values of its sub-expressions.
– The type of an expression depends only on the types of its sub-expressions.

21 + 21 42 6 ∗ 7
[2, 7, 6] [1+1, 2+5, 3+3]
(fn x => x + x) (fn y => 2 ∗ y)

Extensional Equivalence

=~

=~
=~ =~

=~

Need a slightly more general definition to include function values:

Base

DO NOT USE!

 You will learn how to extract
components using pattern matching

*

*

Def: A function f is total if f reduces to a value
and f(x) reduces to a value for all values x in X.

Functions
In math, one talks about a function f
mapping between spaces X and Y,

f : X → Y
In SML, we will do the same, with X and Y being types.

Issue: Computationally, a function may not always
return a value. That complicates checking equivalence.

*

* (With one unusual exception, this first condition is implied by the second.
We write it for emphasis, since f could be a general expression of type X → Y.)

Functions
In math, one talks about a function f
mapping between spaces X and Y,

f : X → Y
In SML, we will do the same, with X and Y being types.

Issue: Computationally, a function may not always
return a value. That complicates checking equivalence.

(Totality is a key difference between math and computation.)

Def: A function f is total if f reduces to a value
and f(x) reduces to a value for all values x in X.

Sample Function Code

Sample Function Code

keyword function
name

argument
name & type

result
type

body of function

function type

Five-Step Methodology

keyword function
name

argument
name & type

result
type

body of function

function type1
2

3

4

5

Six-Step Methodology

keyword function
name

argument
name & type

result
type

body of function

function type1
2

3

4

5 6
Proof!

Closures
Function declarations also create value bindings:

The closure consists of two parts:

 An environment (all prior bindings).

keyword argument
name & type

body of function

binds the identifier square to a closure.

 A lambda expression (code):

 An environment (all prior bindings).

Closures
Function declarations also create value bindings:

The closure consists of two parts:

keyword argument
name & type

body of function
CAUTION: Do NOT write return type.

binds the identifier square to a closure.

 A lambda expression (code):

 An environment (all prior bindings).

 A lambda expression (code):

Closures
Function declarations also create value bindings:

The closure consists of two parts:

keyword argument
name & type

body of function
CAUTION: Do NOT write return type.

NOTE

binds the identifier square to a closure.

Closures
Function declarations also create value bindings:

binds the identifier square to a closure:

Course Tasks

• Assignments 45%
• Labs 10%
• Midterm 1 10%
• Midterm 2 15%
• Final 20%

Roughly one assignment per week, one lab per week.

Collaboration

Be sure to read the
course and university webpages

regarding academic integrity.

TO DO TONIGHT

Go to 150’s Canvas.
Select Assignments.
Do the Setup Lab.

(Important preparation before Wednesday’s lab.)

(If you have questions, ask on 150’s Piazza.)

That is all.

Have a good lab tomorrow.

See you Thursday.

	Functions.pdf
	Functions
	Functions
	Functions

	Types.pdf
	Types

	Types.pdf
	Types

	Types.pdf
	Types

	Types.pdf
	Types

	Title.pdf
	15-150�Principles of Functional Programming
	15-150�Principles of Functional Programming

	CourseTasks.pdf
	Course Tasks

	Title.pdf
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming

	Integrity.pdf
	Collaboration

	Title.pdf
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming

	CourseTasks.pdf
	Course Tasks

	Canvas.pdf
	TO DO TONIGHT

	ThatIsAll.pdf
	That is all.

