15-150

Principles of Functional Programming

Slides for Lecture 1
Introduction, Philosophy, Some Basics
January 14, 2025

15-150

Principles of Functional Programming

Michael Erdmann Dilsun Kaynar
Aileen Guo, Andrew Lam, Jacky Gao, Kiera O'Flynn

Alan Abraham, Alex Xu, Alice Tran, Anna Gu, Isaac Li,
Annie Zhang, Brandon Dong, Caroline Shi, vy LI,
Daniel Brown, Daniel Ragazzo, Emma Tong, Eric Xu,
Ethan Huang, Janise Kim, Madison Zhao, Nia Robinson,
Stephen Mao, Ting Chen, Xiao Yuan, Nathan Porter,
Jerry Song, Rong Yuan, Megan Han, Lillian Yu, Amy Ma,
Alison Ding, Eric Feng, Alex Willoughby, Chenyun Yang,
Owen Lalis, Rachel Du, Meera Pradeepan, Annie Wang,
Monica Wan, Andrew Zhou, Elijah Rosen, Xavier Lien

How to Succeed In College

SHOW UP

How to Succeed In College

SHOW UP

Go to lecture, go to lab.

Do not expect to understand everything in real-time.

Repeated exposure Is important.

How to Succeed In College

Take Notes

By writing.

The eye-hand-brain loop Is magical.

How to Succeed In College

Study Your Notes

How to Succeed In College

Study Your Notes

The same day. And again.
And again. And again.

Figure out what you don’t understand.

Repeated exposure Is important.

How to Succeed In College

Keep up
Do not let work pile up.

Small steps, big achievements.

How to Succeed In College

SHOW UP

Take Notes
Study Your Notes

Keep up

Course Webpage

http://www.cs.cmu.edu/~15150/

Policies: http://www.cs.cmu.edu/~15150/policy.htm|

Lectures: http://www.cs.cmu.edu/~15150/lect.html

http://www.cs.cmu.edu/~15150/
http://www.cs.cmu.edu/~15150/policy.html
http://www.cs.cmu.edu/~15150/lect.html

Computation is Functional

eJ\P re SSton S

FUV\C.{IOV\S me VOIuQS
‘t‘.o values

-

J:anera'l:ive. vs.

Command.

!

o execuwle&
’ ‘nas an e@ec{

xe= 5

(S{afﬁ)

_Fum:l iona

Ex pression

!

oeva‘ua{ei
 no effect

24
(Va\ue)

Programmlng as Explanatlon
PY‘O‘D‘QW\ s‘l‘.a‘LeW\e.V\{

1

lﬂ\s\'\ ER.?GC{Q'h LA VC\Y‘;O.V\'ES
to exPiam d e sped@icaﬁn‘ous
P"e“sela proa'cs o‘c_- Co'rre'dne_ss. 2

Couc tSQ‘J -
CO&Q

“ Ana‘a!e, Decompose 4 F. Prove o

e
. o>

Parallelism

<1,0,0,1,1>
<1,0,1,1,0>
<1,1,1,0,1>
<0,1,1,0,0>

v Vb
=L N

=
N

Parallelism

sum : int sequence — Int
type row = Int seguence
type room = row sequence

fun count (class : room) : int =
sum (map sum class)

Parallelism
e Work:

» Sequential Computation
e Total sequential time;
number of operations

e Span:
 Parallel Computation

 How long would it take If one could have as
many processors as one wants;

length of longest critical path

Three Recent Theses

* August 2022, Efficient and Scalable Parallel
Functional Programming Through Disentanglement,
by Sam Westrick, advised by Umut Acar.

« June 2022, Deductive Verification for Ordinary
Differential Equations: Safety, Liveness, and Stabillity,
by Yong Kiam Tan, advised by André Platzer.

* QOctober 2021, First Steps in Synthetic Tait
Computability: The Objective Metatheory of Cubical

Type Theory, by Jonathan Sterling, advised by
Robert Harper.

Defining ML (Effect-Free Fragment)

e Typest
e Lixpressions e

e Values v (subset of expressions)

Emeplesg

(3+4)*Q
7 *Q
[Y

(Zeu)* (2+1)

-1

“'“\Q " A “Na“‘l&s‘.

—> "He walrus”

The EXPrESS lon
"'H\e A W h)a‘fks"

Y‘&clu(,-?s 1o He vafue
"Hhe walrug''

I+ hes 'I‘Jpe S'frl‘nJ_.

\W X 1
S
“‘“"E- wa\ru

7
=3

l s

ype
t have [*}j
no

Claés

Types

A type isa prediction about the kind of value an
expression must have Iif it winds up reducing to a value.

(SML makes this prediction before evaluating the expression.
Evaluation may ultimately produce a value of that type,
but could alternatively raise an exception or loop forever.)

An expression is well-typed if it has a type,
and ill-typed otherwise.

(The phrase ‘to type-check €’ means to decide whether e is well-typed.
The phrase ‘e type-checks’ means e is well-typed.)

Important: SML never evaluates an
ill-typed expression.

Given an expression e:

First,

SML determines whether e is well-typed.

|f expression e Is well-typed,
then SML evaluates expression e;
otherwise, SML reports a type error.

Expressions

Every well-formed ML expression e

e has a type t, written as e : t

e may have a value v, written as e < v.
e

e may have an effect (not for our effect-free fragment)

Exawple: (3+4)%3 2 int

Br4)ea <> 14

Integers, Expressions

Type int

Values ...,71,0,1,...,

that is, every integer n.

Expressions €1 + ey, e1 — e, €1 * €,

e; div ey, e; mod ep, ete.

EXQMF’Q: ~(7‘ » 3

Integers, Typing

Typing Rules

® n:int

$ e1 T & ik

if e;:int and es: int

similar for other operations.

E\lahfle‘:

Integers, Evaluation

Evaluation Rules
% 61+82=1>61+82 if e] = e

with 7 the sum of the
integer values n; and n,.

Example of a well-typed
expression with no value

5divO:Int

v |>~€Cacuse A‘V eXP?¢+S
+we Ev\‘ts and] V‘€.+\4ms an it

However, § div O

c(oes not reo[uce o « Va[ue.

N \l.a.‘kiom (\)ecalp

t e hastype ¢
-

)

- . rEcluces 'éo e
e=>e e

)]
to v
«e, e.va(udes
\V4
e

Extensional Equivalence

[

An eguivalence relation on expressions
(of the same type).

Extensional Equivalence

Expressions are extensionally equivalent if they

have the same type and one of the following is true:
both expressions reduce to the same value,
or both expressions raise the same exception,
or both expressions loop forever.

Functions are extensionally equivalent if they map equivalent
arguments to equivalent results.

In proofs, we use = as shorthand for “is equivalent to”.

Examples: 21+21 = 42 = 6«7
[2,7,6] = [1+1, 2+5, 3+3]

(fnx=>x+Xx) = (lhny=>2xy)

Functional programs are referentially transparent, meaning:
— The value of an expression depends only on the values of its sub-expressions.
— The type of an expression depends only on the types of its sub-expressions.

Need a slightly more general definition to include function values:

- Expressions are extensionally equivalent if they

have the same type and one of the following is true:
both expressions reduce to equivalent values,
or both expressions raise equivalent exceptions,
or both expressions loop forever.

- Functions are extensionally equivalent if they map equivalent
arguments to equivalent results.

* |n proofs, we use = as shorthand for “is equivalent to”.

P~

« Examples; 21+21 = 42 = 6+7
[2,7,6] = [1+1, 2+5, 3+3]
fnx=>x+X) = (fny=>2xYy)

- Functional programs are referentially transparent, meaning:
— The value of an expression depends only on the values of its sub-expressions.
— The type of an expression depends only on the types of its sub-expressions.

.__r_:) ‘a_e_s__m__M_L

Base {UPQS :

ih'l: s VYéea l A Bool’ C,Lqr, S"'ﬁng

COnS'\'ruc{'ECL 'LJPCS:
Pr‘Oc(uc"l: 'LUPQS

'F'A“C":I‘Ou 'L'J pes
user-defined *‘J pes

Products, Expressions

Types 11 * to for any type t; and ?».
Values (v1, vyp) for values v1 and v».

Expressions (ej, ey), #1l e, #2e

| —— *

Examples: (3+y, +rue)
(Lo, ~i56)
(3,5, false,~2)

You will learn how to extract
components using pattern matching

S

Products, Typing

Typing Rules
@ (e1, e3) : t1 * by

if e;:#

and es : i

E-mm,aia: (3"'"!) +rue> ~ iuf *Lm(

Products, Evaluation

Evaluation Rules
@ (e1, €) Ly (ef, ep) if el=1>e’1

@ (v,) == (v, eh) if ez——l—}-efg

Whet are the "J’UPQ 3 valuwe of ...

(3x4, LI+73 +rue)

TBFe reasonin%
3* 9 3 int

L1+ ¢ real

3 trve ¢ beol
So (3*4, LI+2R, +re)

¢ int * rea| # boo|

Eva\uu'\'bg_

(’3* 4, L]+ 33, -\-rue)
—> (1}, LI+ 23, +ru9_>
:i (2, %3, +ru€.>

That is a value, so

(3% 4, L1473 true)
_» (13, %3, 'h’uQ)

w\na"‘ are. the ','jl)e. 2 \/QIue, o'P

(34, LI+73 +rue)

(3*'4) l.]-*?.a)')‘rue) 2 il * vreal ¥ bool

(3¢, LI+Z, true) <3 (13, 8.3, true)

Whet are the +JP9' 3 value of ...

(5div O, +l)
(Sdv 0, a+1) ¢ int * int

(5 dv O, a+ D does not reduce to

a valu@, because
@Valuahon off § div O

Yaises an excep-l-:an .

w‘ha"‘ are ‘H\e 'J’er. 3 Vqlue_ o‘P

(3+ "mles", false)

This expression is]”-"'Jpec\) e, 1t
hes no type, because the subexpression
B+ "miles s ill-typed,

SML does not ewaluate lll-'}vyecl
expressions, So the expression has no value,

Whet are the +m>e, 3 valuwe of ...

(a> (Frue, ““")) 3")

U)\na"' are ‘H«e 'J'jl)e, 3 \/qlue, o‘P

(3, (+we, "a"), 3.1)
This expression hee 'bpe int ® (bool® s'\ﬁuj)t rea\,
which s different from inte bao*s'\n‘vuml,
Contrast:
(3, (Hrve,"a"), '3~\) : 'm‘ti(boo‘fﬁ'l'ﬁng)freq)
vs. (3, me)",,"p.\): wi # bw\fslﬁ..amal,

Whet are the -)'j,)e 3 value of ...

(a) (Frue, ““">) 3")

(2, (4rue,"a") 3.1) : inte (boolnstring)« real

(2, (true, "a*) 21) 2 (3, (4rwe,"a"), 3.

Functions

In math, one talks about a function f
mapping between spaces X and Y,

f: X =Y
In SML, we will do the same, with X and Y being types.

Issue: Computationally, a function may not always
return a value. That complicates checking equivalence.

Def: A function f is total if f reduces to a value*
and f(x) reduces to a value for all values x in X.

* (With one unusual exception, this first condition is implied by the second.
We write it for emphasis, since f could be a general expression of type X — Y.)

Functions

In math, one talks about a function f
mapping between spaces X and Y,

f: X =Y
In SML, we will do the same, with X and Y being types.

Issue: Computationally, a function may not always
return a value. That complicates checking equivalence.

Def: A function f is total if f reduces to a value
and f(x) reduces to a value for all values x in X.

(Totality is a key difference between math and computation.)

Sample Function Code

(* square : int -> int
REQUIRES: true

ENSURES: square (x) evaluates to x * x
*)

fun square (x:int) : int = x * x

(* Testcases: *)

val 0 = square 0
val 49 = square 7
val 81 = square (~9)

Sample Function Code

(* square : int -> int function type
REQUIRES: true
ENSURES: square (x) evaluates to x * x

*)
fun square (x:int) : int = x * x
keyword function argument result body of function

name name & type type

(* Testcases: *)

val O square 0O
val 49 = square 7
val 81 square (~9)

Five-Step Methodology

square : int -> int functiontype
REQUIRES: true
ENSURES: square (x) evaluates to x * x

*)
@fun square (x:int) : int = x * x
eyword function argument result body of function
name name & type type
@(* Testcases: *)
val 0 = square 0

val 49 = square 7
val 81 square (~9)

Six-Step Methodology

square : int -> int functiontype
REQUIRES: true
ENSURES: square (x) evaluates to x * x

*)
@fun square (x:int) : int = x * x
eyword function argument result body of function
name name & type type
(::>(* Testcases: *) (::)
Proof!
val 0 = square 0

val 49 = square 7
val 81 square (~9)

1
De,c, xara‘l;fom S

E NViron MEV_[:S

SC@PQ .

Declwm'h‘oy\

va| Pi : real = 34

P11 1

keawmﬂ ideutifior '|':">€ Va lve

Tuhoduaces b.».,j.\d of pi to 3.1
(smehes wiitlea [3.04/pc 1)

Le)(\'ax“a S”‘&'Hca“a SC¢>/D€4/,

val x it = 3-§ [3/31
val y it = x! L4/y]
val X 1wt =10 [1o/x1
va) 2 1wt = x4/ Tn/e]

SQCUV\A 'bl\lﬂ&\\\ a‘F X
Shadows Pivst bﬂu@ﬂa

Fast b.mO.\J has beea shq./owﬂ

WW%

Local Declarction
let . in..end

let |
va_l wm ¢ ;v\t = 3
VQ‘ n . .lV\'L = MWMim

in
M+ N
end

|\ ~/ —

This s an expression.
What +Jpe does i+ have ? wt

Whet value 7 12

LoCa, Dé&larccfh‘ams)

val kst = Y4

+3Pe. Paiv\f = ‘P (oa{*(‘,oa'li

Closures

Function declarations also create value bindings:
fun square (x:1int) : int = x * x
binds the identifier square to a closure.

The closure consists of two parts:
e Alambda expression (code):

fn (x : 1nt) => x * x
keyword argument body of function
name & type

e An environment (all prior bindings).

Closures

Function declarations also create value bindings:
fun square (x:1int) : int = x * x
binds the identifier square to a closure.

The closure consists of two parts:
e Alambda expression (code):

fn (x : 1nt) => x * x
keyword ~ argument body of function
name & type

CAUTION: Do NOT write return type.

e An environment (all prior bindings).

Closures

Function declarations also create value bindings:

fun square (x:int) : int<:>x * x
binds the identifier square to a closure\

The closure consists of two parjs:/ NOTE

e A lambda expression (code)

fn (x : 1nt) x * x

name & type

body of function

CAUTION Do NOT write return type.

e An environment (all prior bindings).

Closures

Function declarations also create value bindings:

fun square (x:1int) : int = x * x

binds the identifier square to a closure:

— | h h
‘?0\ (X’,'m‘l',) = X¥ X
CnvironmLnt S,‘P"q‘fﬂ

oIl bindings when
Siuare Wwas
L c(e,c‘ared)

L_,.....-—-'

Course Tasks

Assignments 45%
Labs 10%
Midterm 1 10%

Midterm 2 15%
Final 20%

Roughly one assignment per week, one lab per week.

Collaboration

Be sure to read the
course and university webpages
regarding academic integrity.

TODO TONIGHT

Goto 150's Canvas.
Select Assignments.
Do the Setup Lab.

(Important preparation before Wednesday’s lab.)

(If you have questions, ask on 150’s Piazza.)

That is all.
Have a good lab tomorrow.

See you Thursday.

	Functions.pdf
	Functions
	Functions
	Functions

	Types.pdf
	Types

	Types.pdf
	Types

	Types.pdf
	Types

	Types.pdf
	Types

	Title.pdf
	15-150�Principles of Functional Programming
	15-150�Principles of Functional Programming

	CourseTasks.pdf
	Course Tasks

	Title.pdf
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming

	Integrity.pdf
	Collaboration

	Title.pdf
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming
	15-150Principles of Functional Programming

	CourseTasks.pdf
	Course Tasks

	Canvas.pdf
	TO DO TONIGHT

	ThatIsAll.pdf
	That is all.

