
15-150

Principles of Functional Programming

Slides for Lecture 2

Functions (continued)

January 16, 2025

Michael Erdmann

Lessons:

• Recall: Declarations, Bindings, Closures

• Function Application

• Recursion

• Patterns

• Functions as first-class values

• Some comments about and totality

Declarations
and

Bindings

(Recall from last time:)

Recall: Declarations & Bindings

Here is one declaration:

val pi : real = 3.14159

Binding (behind the scenes in the environment):

Recall: Declarations & Bindings

Here are two declarations:

val pi : real = 3.14159

fun area (r:real) : real = pi*r*r

Bindings (behind the scenes in the environment):

Recall: Declarations & Bindings

Here are two declarations:

val pi : real = 3.14159

Bindings (behind the scenes in the environment):

lambda expression

fun area (r:real) : real = pi*r*r

Function
Application

Function Application

What does SML do with this expression?

Let’s look at the more general case first:

(Then we will come back to the specific expression.)

e2 e1

area (2.1 + 1.9)

Typecheck e2 e1

Typechecking Rules e2 e1

(fn (x:t1) => body) : t1 -> t2●

if body : t2 assuming x:t1.

Typechecking Rules e2 e1

(fn (x:t1) => body) : t1 -> t2●

if body : t2 assuming x:t1.

The type of x matters!

For instance, if body is x + 9,

then body only has a well-defined

type if x : int.

Typechecking Rules e2 e1

(fn (x:t1) => body) : t1 -> t2●

if body : t2 assuming x:t1.

(fn (x:int) => x) : ?????

(fn (x:real) => x): ?????

Typechecking Rules e2 e1

(fn (x:t1) => body) : t1 -> t2●

if body : t2 assuming x:t1.

(fn (x:int) => x) : int -> int

(fn (x:real) => x): real -> real

Typechecking Rules e2 e1

(fn (x:t1) => body) : t1 -> t2●

if body : t2 assuming x:t1.

e2 e1 : t2●

if e2 : t1 -> t2
and e1 : t1.

Typecheck area (2.1 + 1.9)

● area : real -> real

Why?

Because area is the lambda expression

fn (r:real) => pi*r*r

and pi*r*r : real

given that pi:real (by its declaration)

and r:real (by type annotation).

Typecheck area (2.1 + 1.9)

● area : real -> real

● (2.1 + 1.9) : real

Why?

Because 2.1 : real

and 1.9 : real

and the symbol + here represents

the addition function with type
real * real -> real.

Typecheck area (2.1 + 1.9)

● area : real -> real

● So area (2.1 + 1.9) : real

● (2.1 + 1.9) : real

In particular, the expression is well-typed.

SML will only evaluate an expression

if the expression is well-typed.

REMEMBER:

Evaluate e2 e1

Evaluation Rules: e2 e1

(1) Reduce e2 to a (function) value.

(2) Reduce e1 to a value v.

Step (2) occurs only if step (1) produces a value.

Steps (3) and (4) occur only if steps (1) and (2) produce values.

Step (4) may or may not produce a value.

(3) Extend env with the binding [v/x].

(4) Evaluate body in this extended environment.

Recall: This is a closure containing a lambda expression
(fn (x:t) => body) and an environment env consisting

of the bindings present when the function was defined.

Evaluation Rules: e2 e1

(1) Reduce e2 to a (function) value.

(2) Reduce e1 to a value v.

(3) Extend env with the binding [v/x].

(4) Evaluate body in this extended environment.

Recall: This is a closure containing a lambda expression
(fn (x:t) => body) and an environment env consisting

of the bindings present when the function was defined.

If evaluation of body produces a value w,

return w in the original calling environment.

Evaluate area (2.1 + 1.9)

area (2.1 + 1.9)

[3.14159/pi]

(fn (r:real) => pi*r*r)(2.1 + 1.9)

[3.14159/pi](fn (r:real) => pi*r*r) 4.0

[3.14159/pi][4.0/r] pi*r*r

50.26544

(Often we leave off the environments when we

write reductions, but I wrote them here to be explicit.)

Evaluation Summary

val pi : real = 3.14159

fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) 50.26544

Evaluation Summary & Question

val pi : real = 3.14159

fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) 50.26544

val pi : real = 0.0

Evaluation Summary & Question

val pi : real = 3.14159

fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) 50.26544

val pi : real = 0.0

area (2.1 + 1.9) ????????

Evaluation Summary & Question

val pi : real = 3.14159

fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) 50.26544

val pi : real = 0.0

area (2.1 + 1.9) ????????

Answer: Same as before, 50.26544.

Why?

Evaluation Summary & Question

val pi : real = 3.14159

fun area (r:real) : real = pi*r*r

area (2.1 + 1.9) 50.26544

val pi : real = 0.0

area (2.1 + 1.9) ????????

Answer: Same as before, 50.26544.

Why? Because when area is defined,

pi is bound to 3.14159.

Recursion

A math text might define the factorial function by:

fact(0) = 1,

fact(n) = n(fact(n-1)), for all n > 0.
(And then write n! as mathematical shorthand for fact(n).)

A math text might define the factorial function by:

fact(0) = 1,

fact(n) = n(fact(n-1)), for all n > 0.
(And then write n! as mathematical shorthand for fact(n).)

That math definition becomes SML code like this:

(* fact : int -> int

REQUIRES: n >= 0

ENSURES: fact(n) ==> n!

*)

fun fact(0:int):int = 1

| fact(n:int):int = n*(fact(n-1))

A math text might define the factorial function by:

fact(0) = 1,

fact(n) = n(fact(n-1)), for all n > 0.
(And then write n! as mathematical shorthand for fact(n).)

That math definition becomes SML code like this:

(* fact : int -> int

REQUIRES: n >= 0

ENSURES: fact(n) ==> n!

*)

fun fact(0:int):int = 1

| fact(n:int):int = n*(fact(n-1))

val 1 = fact 0

val 720 = fact 6

1
2

3

4

5

Patterns

Function Clauses & Pattern Matching

fun fact(0:int):int = 1

| fact(n:int):int = n*(fact(n-1))

There are two function clauses in this code.

• When SML evaluates an expression of the form fact(value), SML tries

to match value against each pattern (in sequential order).

• If a pattern match succeeds, SML creates variable bindings whenever the
pattern includes variables, then evaluates the corresponding expression.

• For fact(0), 0 matches the first pattern and SML evaluates 1.

• For fact(3), 3 matches the second pattern and SML creates binding

[3/n], which then is in scope for evaluation of n*(fact(n-1)).

The first clause starts with keyword fun.

The second clause starts with the “or bar” | .

After that, each clause is of the form
fact pattern = expression

General Form

fun f p1 = e1

| f p2 = e2

| f pk = ek

Each pj is a pattern and each ej is an expression.

If f : t -> t’, then

each pattern pj must match type t,

and each expression ej must have type t’,

given the types of any variables in pj.

NOTE:

General Form

fun f p1 = e1

| f p2 = e2

| f pk = ek

Each pj is a pattern and each ej is an expression.

When evaluating f(v) for some value v, SML will try to match v

against p1, then p2, etc., until a match pj succeeds (including

any variable bindings needed), at which point SML evaluates ej.

If no pattern matches v, evaluation will result in a fatal runtime

error. For this reason, the set of patterns {pj} should cover all

possibilities. SML will give a “nonexhaustive” warning if that is
not the case when f is declared. SML will also raise a fatal error

when f is declared if there are redundant (i.e., extra) patterns.

What is a pattern?

For now, a pattern can be any of the following:

In the future, we will see additional patterns

coming from datatypes (such as lists).

Patterns must be linear, meaning any variable

can appear at most once in any one pattern.

• a constant (e.g., 3, true, "abc"; no reals)

• a variable

• a tuple of subpatterns

• the wildcard _ (which matches anything)

Tuples

Patterns can appear in declarations

Example:

val (k,r) : int * real = (2, 3.14)

This pattern is a tuple -- a pair whose two

subpatterns are each variables.

Patterns can appear in declarations

Example:

val (k,r) : int * real = (2, 3.14)

The declaration creates two variable bindings

(behind the scenes in the environment):

[2/k, 3.14/r]

Patterns can appear in declarations

Example:

val 49 : int = square(7)

This pattern is a constant.

This “declaration” contains no variables.

It will succeed only if the value
returned by square is 49.

So it amounts to a test.

(Tests can have more elaborate patterns.)

Patterns can appear in declarations

In this example, a pattern extracts tuple elements:
(* fibb : int -> int * int

REQUIRES: n >= 0

ENSURES: fibb(n) ==> (fn, fn-1)

with fn the nth Fibonacci number (let f-1 = 0).

*)

fun fibb (0:int):int*int = (1,0)

| fibb n =

let

val (a:int, b:int) = fibb(n-1)

in

end

fn : 1,1,2,3,5,8,13,21

n : 0,1,2,3,4,5, 6, 7

This is how you should extract

elements from a tuple.

Patterns can appear in declarations

In this example, a pattern extracts tuple elements:
(* fibb : int -> int * int

REQUIRES: n >= 0

ENSURES: fibb(n) ==> (fn, fn-1)

with fn the nth Fibonacci number (let f-1 = 0).

*)

fun fibb (0:int):int*int = (1,0)

| fibb n =

let

val (a:int, b:int) = fibb(n-1)

in

?????????????

end

fn : 1,1,2,3,5,8,13,21

n : 0,1,2,3,4,5, 6, 7

Patterns can appear in declarations

In this example, a pattern extracts tuple elements:
(* fibb : int -> int * int

REQUIRES: n >= 0

ENSURES: fibb(n) ==> (fn, fn-1)

with fn the nth Fibonacci number (let f-1 = 0).

*)

fun fibb (0:int):int*int = (1,0)

| fibb n =

let

val (a:int, b:int) = fibb(n-1)

in

(a+b, a)

end

val (21, 13) = fibb 7

fn : 1,1,2,3,5,8,13,21

n : 0,1,2,3,4,5, 6, 7

Patterns can appear in declarations

In this example, a pattern extracts tuple elements:
(* fibb : int -> int * int

REQUIRES: n >= 0

ENSURES: fibb(n) ==> (fn, fn-1)

with fn the nth Fibonacci number (let f-1 = 0).

*)

fun fibb (0:int):int*int = (1,0)

| fibb n =

let

val (a:int, b:int) = fibb(n-1)

in

(a+b, a)

end

val (21, _) = fibb 7

fn : 1,1,2,3,5,8,13,21

n : 0,1,2,3,4,5, 6, 7

case

Patterns appear in case expressions

Note: => (not =).(case e of

p1 => e1

| p2 => e2

| pk => ek)

Patterns appear in case expressions

• Semantics similar to functions, with e playing role of argument.

• Typechecking:

– Expression e must have a type t’ and all pj must be able match type t’.

– The expressions ej must all have the same type, call it t (given types of

variables in associated patterns).

– Type t is the overall type of the case expression.

(case e of

p1 => e1

| p2 => e2

| pk => ek)

Patterns appear in case expressions

• Semantics similar to functions, with e playing role of argument.

• Typechecking:

– Expression e must have a type t’ and all pj must be able match type t’.

– The expressions ej must all have the same type, call it t (given types of

variables in associated patterns).

– Type t is the overall type of the case expression.

: t

(case (e : t’) of

p1 => e1

| p2 => e2

| pk => ek)

Patterns appear in case expressions

• Semantics similar to functions, with e playing role of argument.

• Typechecking:

– Expression e must have a type t’ and all pj must be able match type t’.

– The expressions ej must all have the same type, call it t (given types of

variables in associated patterns).

– Type t is the overall type of the case expression.

• If typechecking succeeds, SML evaluates e. If e reduces to value v, SML

matches v against p1, p2, …, then evaluates ej of first matching pj (if any).

If ej reduces to a value w, SML returns w as the value of the case.

(case e of

p1 => e1

| p2 => e2

| pk => ek)

case is useful to avoid nested if-then-else

(* example : int -> int

REQUIRES: true

ENSURES: example(x) returns

0 if x = 1,

x*x - 1 if x < 1,

and 1 - x*x*x if x > 1.

*)

fun example (x:int):int =

(case (square x, x > 0) of

(1, true) => 0

| (sqr, false) => sqr - 1

| (sqr, _) => 1 - x*sqr)

case is useful to avoid nested if-then-else

(* example : int -> int

REQUIRES: true

ENSURES: example(x) returns

0 if x = 1,

x*x - 1 if x < 1,

and 1 - x*x*x if x > 1.

*)

fun example (x:int):int =

(case (square x, x > 0) of

(1, true) => 0

| (sqr, false) => sqr - 1

| (sqr, _) => 1 - x*sqr)

case is useful to avoid nested if-then-else

(* example : int -> int

REQUIRES: true

ENSURES: example(x) returns

0 if x = 1,

x*x - 1 if x < 1,

and 1 - x*x*x if x > 1.

*)

fun example (x:int):int =

(case (square x, x > 0) of

(1, true) => 0

| (sqr, false) => sqr - 1

| (sqr, _) => 1 - x*sqr)

case is useful to avoid nested if-then-else

(* example : int -> int

REQUIRES: true

ENSURES: example(x) returns

0 if x = 1,

x*x - 1 if x < 1,

and 1 - x*x*x if x > 1.

*)

fun example (x:int):int =

(case (square x, x > 0) of

(1, true) => 0

| (sqr, false) => sqr - 1

| (sqr, _) => 1 - x*sqr)

If second clause is relevant, get binding
[v/sqr],with v value of square x.

case is useful to avoid nested if-then-else

(* example : int -> int

REQUIRES: true

ENSURES: example(x) returns

0 if x = 1,

x*x - 1 if x < 1,

and 1 - x*x*x if x > 1.

*)

fun example (x:int):int =

(case (square x, x > 0) of

(1, true) => 0

| (sqr, false) => sqr - 1

| (sqr, _) => 1 - x*sqr)

case is useful to avoid nested if-then-else

(* example : int -> int

REQUIRES: true

ENSURES: example(x) returns

0 if x = 1,

x*x - 1 if x < 1,

and 1 - x*x*x if x > 1.

*)

fun example (x:int):int =

(case (square x, x > 0) of

(1, true) => 0

| (sqr, false) => sqr - 1

| (sqr, _) => 1 - x*sqr)

If third clause is relevant, get binding
[v/sqr],with v value of square x.

Functions as
First-Class

Values

Passing a function as an argument

(* sqrf : (int -> int) * int -> int

REQUIRES: true

ENSURES: sqrf (f, x) ==> (f(x))*(f(x))

*)

The argument type is a pair
consisting of an int -> int function

and an int .

Passing a function as an argument

(* sqrf : (int -> int) * int -> int

REQUIRES: true

ENSURES: sqrf (f, x) ==> (f(x))*(f(x))

*)

fun sqrf (f : int -> int, x : int) : int =

square(f(x))

(* Testing *)

val 36 = sqrf (fn (n:int) => n + 2, 4)

Passing a function as an argument

(* sqrf : (int -> int) * int -> int

REQUIRES: true

ENSURES: sqrf (f, x) ==> (f(x))*(f(x))

*)

fun sqrf (f : int -> int, x : int) : int =

square(f(x))

(* Testing *)

val 36 = sqrf (fn (n:int) => n + 2, 4)

Notice how we can write an anonymous

lambda expression inline.

Passing a function as an argument

(* sqrf : (int -> int) * int -> int

REQUIRES: true

ENSURES: sqrf (f, x) ==> (f(x))*(f(x))

*)

fun sqrf (f : int -> int, x : int) : int =

square(f(x))

Puzzle:
fun dotwice (f : int -> int, x : int) : int =

sqrf (fn (n:int) => sqrf(f,n), x)

Passing a function as an argument

(* sqrf : (int -> int) * int -> int

REQUIRES: true

ENSURES: sqrf (f, x) ==> (f(x))*(f(x))

*)

fun sqrf (f : int -> int, x : int) : int =

square(f(x))

Puzzle:
fun dotwice (f : int -> int, x : int) : int =

sqrf (fn (n:int) => sqrf(f,n), x)

dotwice (fn (k:int) => k, 3) ????????

identity function

Passing a function as an argument

(* sqrf : (int -> int) * int -> int

REQUIRES: true

ENSURES: sqrf (f, x) ==> (f(x))*(f(x))

*)

fun sqrf (f : int -> int, x : int) : int =

square(f(x))

Puzzle:
fun dotwice (f : int -> int, x : int) : int =

sqrf (fn (n:int) => sqrf(f,n), x)

dotwice (fn (k:int) => k, 3) ????????

identity function Answer: 81

That is all.

Please have a good weekend.

See you Tuesday.

	Title.pdf
	15-150Principles of Functional Programming

