
15-150

Principles of Functional Programming

Slides for Lecture 6

Asymptotic Cost Analysis
January 30, 2025
Michael Erdmann

Asymptotic Cost Analysis

• Big-O complexity classes

• Recurrence Relations

• Work and Span

• Application: Sorting

Big-O Complexity Classes
Suppose f(n) and g(n) are positive-valued

mathematical functions (with n a natural number).

We say that “f(n) is O(g(n))”
if there exist N and c such that

f(n) ≤ c*g(n) for all n ≥ N.

Big-O Complexity Classes
Suppose f(n) and g(n) are positive-valued

mathematical functions (with n a natural number).

We say that “f(n) is O(g(n))”
if there exist N and c such that

f(n) ≤ c*g(n) for all n ≥ N.

n2 + n + 3 is O(n2) for instance.

(use N=3 and c=2)
(e.g., 72 + 7 + 3 ≤ 2*72)

Big-O Complexity Classes
Suppose f(n) and g(n) are positive-valued

mathematical functions (with n a natural number).

We say that “f(n) is O(g(n))”
if there exist N and c such that

f(n) ≤ c*g(n) for all n ≥ N.

n2 + n + 3 is O(n2) for instance.

for this example also n2 is O(n2 + n + 3)

Big-O Complexity Classes
Suppose f(n) and g(n) are positive-valued

mathematical functions (with n a natural number).

We will let f measure work or span in terms
of some size parameter n (sometimes tree
depth d) and obtain complexity classes

O(1), O(n), O(n2), O(n3), …,
O(logn), O(n·logn), O(2n),…

Analyzing append and rev
(* op @ : int list * int list -> int list *)

infixr @
fun [] @ Y = Y
| (x::xs) @ Y = x::(xs @ Y)

(* rev : int list -> int list
REQUIRES: true
ENSURES: rev(L) returns a list consisting

of L’s elements in reverse order.
*)
fun rev [] = []
| rev (x::xs) = (rev xs) @ [x]

fun [] @ Y = Y
| (x::xs) @ Y = x::(xs @ Y)

Code for append:

Work analysis of append:
W@(n,m) with n and m the sizes of the input lists.

Equation for base case:
W@(0,m) = c0, for some c0, all m.

Equation for recursive clause, for n > 0:
W@(n,m) = c1 + W@(n-1,m), for some c1, all m.

W@(0,m) = c0Solving:
W@(n,m) = c1 + W@(n-1,m)

Unrolling:

W@(n,m) = c1 + c1 + W@(n-2,m)

W@(0,m) = c0Solving:
W@(n,m) = c1 + W@(n-1,m)

Unrolling:

W@(n,m) = c1 + c1 + W@(n-2,m)

= c1 + c1 + c1 + W@(n-3,m)

W@(0,m) = c0Solving:
W@(n,m) = c1 + W@(n-1,m)

Unrolling:

W@(n,m) = c1 + c1 + W@(n-2,m)

= c1 + c1 + c1 + W@(n-3,m)

... = n·c1 + c0 (can prove this by induction)

So evaluation of (X @ Y) has O(n) work,
with n the length of X.

fun rev [] = []
| rev (x::xs) = (rev xs) @ [x]

Code for rev:

Work analysis of rev:
Wrev(n) with n the size of the input list.

Equation for base case:

Wrev(0) = c0, for some c0.

Equation for recursive clause, for n > 0:

Wrev(n) = c1 + Wrev(n-1) + W@(n-1,1), some c1.
Why?

(use a little lemma that tells us)

For all list values L,

≅length (rev L) length L

fun rev [] = []
| rev (x::xs) = (rev xs) @ [x]

Code for rev:

Work analysis of rev:
Wrev(n) with n the size of the input list.

Equation for base case:

Wrev(0) = c0, for some c0.

Equation for recursive clause, for n > 0:

Wrev(n) = c1 + Wrev(n-1) + W@(n-1,1), some c1.

So:

Wrev(n) ≤ c1 + Wrev(n-1) + c2(n-1), some c2.

Wrev(0) = c0Solving:
Wrev(n) ≤ c1 + Wrev(n-1) + c2(n-1)

Wrev(n) ≤ c1 + c2·n + Wrev(n-1)

Unrolling:

Wrev(n) ≤ c1 + c2·n + {c1 + c2(n-1) + Wrev(n-2)}

Wrev(0) = c0Solving:
Wrev(n) ≤ c1 + Wrev(n-1) + c2(n-1)

Wrev(n) ≤ c1 + c2·n + Wrev(n-1)

Unrolling:

Wrev(n) ≤ c1 + c2·n + {c1 + c2(n-1) + Wrev(n-2)}

≤ c1 + c2·n + c1 + c2(n-1)

+ {c1 + c2(n-2) + Wrev(n-3)}

Wrev(0) = c0Solving:
Wrev(n) ≤ c1 + Wrev(n-1) + c2(n-1)

Wrev(n) ≤ c1 + c2·n + Wrev(n-1)

Unrolling:

Wrev(n) ≤ c1 + c2·n + {c1 + c2(n-1) + Wrev(n-2)}

... ≤ c0 + n·c1 + (n(n+1)/2)·c2

≤ c1 + c2·n + c1 + c2(n-1)

+ {c1 + c2(n-2) + Wrev(n-3)}

Wrev(0) = c0Solving:
Wrev(n) ≤ c1 + Wrev(n-1) + c2(n-1)

Wrev(n) ≤ c1 + c2·n + Wrev(n-1)

Unrolling:

Wrev(n) ≤

≤ c0 + n·c1 + (n(n+1)/2)·c2

...

So evaluation of rev(L) has O(n2) work,
with n the length of L.

Analyzing trev

(* trev : int list * int list -> int list *)

fun trev ([], acc) = acc
| trev (x::xs, acc) = trev(xs, x::acc)

fun trev ([], acc) = acc
| trev (x::xs, acc) = trev(xs, x::acc)

Code for trev:

Work analysis of trev:
Wtrev(n,m) with n and m the sizes of the input lists.

Equation for base case:

Wtrev(0,m) = c0, for some c0, all m.

Equation for recursive clause, for n > 0:

Wtrev(n,m) = c1 + Wtrev(n-1,m+1), some c1, all m.

Unrolling: Wtrev(n,m) = c1 + c1 + Wtrev(n-2,m+2)
... = n·c1 + c0, which is O(n).

Analyzing tree summation
datatype tree = Empty

| Node of tree * int * tree

(* sum : tree -> int *)
REQUIRES: true
ENSURES: sum(T) adds all integers in T.

*)

fun sum (Empty : tree) : int = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x

fun sum Empty = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x

Code for sum:

Work analysis of sum:
Wsum(n) with n the number of nodes in the tree.

Equation for base case:

Wsum(0) = c0, for some c0.

Equation for recursive clause, for n > 0:

Wsum(n) = c1 + Wsum(nl) + Wsum(nr), some c1,

with now nl the number of nodes in the left subtree
and nr the number of nodes in the right subtree.

Wsum(0) = c0Solving:
Wsum(n) = c1 + Wsum(nl) + Wsum(nr)

Tree Method: (write down work that occurs at each node/leaf)

So evaluation of sum(T) has O(n) work.
(can also prove this by induction)

Wsum(n) = c1n + c0(n+1)

c1

c0c1

c1

c1
c0c0c0 c0

c1
c0

Note: Tree need
not be balanced.

Fact: A binary tree has n nodes iff it has n+1 leaves.

Side remark for the curious student

The fact that a binary tree has n nodes iff it has n+1 leaves
is a special instance of the Euler Characteristic.

A slightly more general instance:

In an undirected graph:

#vertices - #edges = #components - #cycles

Code for sum:
fun sum Empty = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x

Is there any opportunity for parallelism?

YES: The recursive calls to sum can occur in parallel.

Code for sum:
fun sum Empty = 0
| sum (Node(l,x,r)) = (sum l) + (sum r) + x

Span analysis of sum:
Ssum(n) with n the number of nodes in the tree.

Equation for base case:

Ssum(0) = c0, for some c0.

Equation for recursive clause, for n > 0:

Ssum(n) = c1 + max{Ssum(nl),Ssum(nr)}, some c1.

Notice how max replaces + in the cost analysis.

Ssum(0) = c0Solving:
Ssum(n) = c1 + max{Ssum(nl),Ssum(nr)}

ALAS! It could be that nl = n-1 and nr = 0.

Then the recursive equation becomes:

Ssum(n) = c1 + Ssum(n-1)

Therefore Ssum(n) is O(n),

meaning we haven’t gained anything
from parallel evaluation.

Suppose however that the tree is balanced.

(This means that roughly half the remaining nodes
appear in each subtree as one descends the tree.)

Ssum(0) = c0
Ssum(n) ≈ c1 + max{Ssum(n/2),Ssum(n/2)}

Then:

Suppose however that the tree is balanced.

(This means that roughly half the remaining nodes
appear in each subtree as one descends the tree.)

Ssum(0) = c0
Ssum(n) = c1 + max{Ssum(n/2),Ssum(n/2)}

Then:

Ssum(n) = c1 + Ssum(n/2)
= c1 + c1 + Ssum(n/4)

... = c1 + c1 + ··· + c1 + c0

So

Now Ssum(n) is O(log(n)),
(⎣log2n⎦ + 1) many times

meaning parallelism is significant.

We could also have obtained this result by
expressing span as Ssum(d),
with d the depth of the tree.

Ssum(0) = c0
Ssum(d) = c1 + max{Ssum(d-1),Ssum(d’)}

Then:

Note: d’ < d

We could also have obtained this result by
expressing span as Ssum(d),
with d the depth of the tree.

Ssum(0) = c0
Ssum(d) = c1 + max{Ssum(d-1),Ssum(d’)}

Then:

Ssum(d) = c1 + Ssum(d-1)

Thus Ssum(d) is O(d).

So

For balanced trees, d is O(log(n)),
and we again see that parallelism helps.

(d=n is possible)This result holds for all trees.

Tree Method for balanced trees:

This tree is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:

This tree is perfectly balanced.
We use it as a model for balanced trees more generally.

Definition: A binary tree is balanced if it is either

or (ii) a Node whose two subtrees are balanced
with depths differing by at most 1.

(i) Empty

Tree Method for balanced trees:

This tree is perfectly balanced.
We use it as a model for balanced trees more generally.

More generally: A binary tree is balanced if it is either

or (ii) a Node whose two subtrees are balanced
with depths differing by at most a constant c.

(i) Empty

Tree Method for balanced trees:

This tree is perfectly balanced.
We use it as a model for balanced trees more generally.

Another definition (consequence of previous defs):

A binary tree is balanced if its depth d is roughly
log(n), with n the number of nodes in the tree.

Tree Method for balanced trees: Work at each level

(c = max(c1,c0))

W(n) = c1(1+2+···+2d-1)+c02d ≤ c2d+1, so O(n).

Tree Method for balanced trees: Work at each level

(c = max(c1,c0))
S(n) = c1(1+1+···+1)+c0 ≤ c(d+1), so O(log(n)).
W(n) = c1(1+2+···+2d-1)+c02d ≤ c2d+1, so O(n).

Tree Method for balanced trees: Work at each level

(c = max(c1,c0))
S(n) = c1(1+1+···+1)+c0 ≤ c(d+1), so O(log(n)).
W(n) = c1(1+2+···+2d-1)+c02d ≤ c2d+1, so O(n).

Sorting

datatype order = LESS | EQUAL | GREATER

Int.compare : int * int -> order

String.compare : string * string -> order

More generally, for some type t may have

compare : t * t -> order

Sorting

datatype order = LESS | EQUAL | GREATER

⇒L is sorted iff compare(x,y) ⇒ LESS or EQUAL
whenever x appears to the left of y in L.

For lists:

[…,x,…LESS|EQUAL…,y,…]LESS|EQUAL

insertion sort for lists
(* ins : int * int list -> int list

REQUIRES: L is sorted
ENSURES: ins(x,L) ==> a sorted permutation of x::L

*)

fun ins (x, []) = [x]
| ins (x, y::ys) = (case compare(x, y) of

GREATER => y::ins(x, ys)
| _ => x::y::ys)

(Remember our definition of a sorted list:

)[…,x,…LESS|EQUAL…,y,…]LESS|EQUAL

insertion sort for lists
(* ins : int * int list -> int list

REQUIRES: L is sorted
ENSURES: ins(x,L) ==> a sorted permutation of x::L

*)

fun ins (x, []) = [x]
| ins (x, y::ys) = (case compare(x, y) of

GREATER => y::ins(x, ys)
| _ => x::y::ys)

(* isort : int list -> int list
REQUIRES: true
ENSURES: isort(L) ==> a sorted permutation of L

*)

fun isort [] = []
| isort (x::xs) = ins (x, isort xs)

fun ins (x, []) = [x]
| ins (x, y::ys) = (case compare(x, y) of

GREATER => y::ins(x, ys)
| _ => x::y::ys)

Code for ins:

Work:
Wins(n) with n the list length.

Equations:

Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Consequently, Wins(n) is O(n).

Also, observe: no opportunity for parallel speedup.

fun isort [] = []
| isort (x::xs) = ins (x, isort xs)

Code for isort:

Work:
Wisort(n) with n the list length.

Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Wisort(n) ≤ c1 + c2·n + Wisort(n-1)So:

Consequently, Wisort(n) is O(n2).
(that should remind you of the recurrence for rev)

Again, no opportunity for parallel speedup.

Sorting

list isort list merge sort tree merge sort

O(n2) O(n·logn) O(n·logn)Work

O((logn)3)
O((logn)2)

O(n2) O(n)Span

(next week) (next week)
(in 15-210)

That is all.

Please have a good weekend.

See you Tuesday.

	15-150, Spring 2020Asymptotic Cost Analysis
	15-150, Spring 2020Asymptotic Cost Analysis
	Big-O Complexity Classes
	Big-O Complexity Classes
	Big-O Complexity Classes
	Big-O Complexity Classes
	Big-O Complexity Classes
	Analyzing append and rev
	Analyzing trev
	Analyzing tree summation
	Sorting
	Sorting
	Sorting
	Sorting
	Sorting
	Sorting
	Sorting
	insertion sort for lists
	insertion sort for lists
	insertion sort for lists
	Sorting
	Sorting
	Sorting
	ThatIsAll.pdf
	That is all.

