15-150

Principles of Functional Programming

Slides for Lecture 6

Asymptotic Cost Analysis

January 30, 2025
Michael Erdmann

Asymptotic Cost Analysis

* Big-O complexity classes
 Recurrence Relations
* Work and Span

* Application: Sorting

Big-O Complexity Classes

Suppose T (n) and g (n) are positive-valued
mathematical functions (with n a natural number).

We say that “F(n) iIs o(g(n))”
If there exist N and c such that

f(n) £ c*g(n) forall n =2 N.

Big-O Complexity Classes

Suppose T (n) and g (n) are positive-valued
mathematical functions (with n a natural number).

We say that “F(n) iIs o(g(n))”
If there exist N and c such that

f(n) £ c*g(n) forall n =2 N.

N> + n + 3 is o(n?%) forinstance.

(use N=3 and c=2)
(e.g., 72 + 7 + 3 £ 2*7%)

Big-O Complexity Classes

Suppose T (n) and g (n) are positive-valued
mathematical functions (with n a natural number).

We say that “F(n) iIs o(g(n))”
If there exist N and c such that

f(n) £ c*g(n) forall n =2 N.

N> + n + 3 is o(n?%) forinstance.

for this example also n? is o(n? + n + 3)

Big-O Complexity Classes

Suppose T (n) and g (n) are positive-valued
mathematical functions (with n a natural number).

We will let ¥ measure work or span in terms
of some size parameter n (sometimes tree
depth d) and obtain complexity classes

0(1),0(Nn),0(Nn%),0(n3), ...
O(logn),O0(n-:-logn), 0(2"),...

Analyzing append and rev

(* op @ : int list * int list -> int list *)
infixr (@
fun [] @R Y =Y

| (x::xs) @ ¥ = x::(xs @ Y)

(* rev : int list -> int 1list
REQUIRES: true
ENSURES: rev (L) returns a list consisting
of L’s elements in reverse order.
*)
fun rev [] = []
| rev (x::xs) = (rev xs) @ [x]

Code for append:

fun [] @ Y =Y
| (x::xs) @ ¥ = x::(xs (@ Y)

Work analysis of append:

W, (n,m) with n and m the sizes of the input lists.

Equation for base case:
W, (0,m) = c,, forsome c, all m.

Equation for recursive clause, forn > O:
We(n,m) = c; + Wy(n-1,m), for some c,, allm.

Solving: W, (0 ,m) Co
W,(n,m) c,+ W,(n-1,m)

Unrolling: /

We(n,m)=c;, + ¢; + Wo(n-2,m)

SOIVinC]: W@ (0 rm)
We(n,m)

Co
c,+ W,(n-1,m)

Unrolling:

Wo(n,m)=c;, + ¢; + We(n-2,m)

N\

Solving: W, (0 ,m)
W,(n,m)

Co
c,+ W,(n-1,m)

Unrolling:

We(n,m)=c;, + ¢; + Wo(n-2,m)

n-c; + C, (canprove this by induction)

So evaluationof (X @ ¥) has O(n) work,
with n the length of X.

Code for rev:

fun rev [] = []
| rev (x::xs) = (rev xs) Q@ [x]

Work analysis of rev:

(n) with n the size of the input list.

rev

Equation for base case:

W, (0) = ¢, for some ¢,.

Equation for recursive clause, forn > O:
(n) =¢; + W, (n-1) + We(n-1,1), some c;.
Why?

rev rev

(use a little lemma that tells us)

For all list values L,

|12

length (rev L) length L

Code for rev:

fun rev [] = []
| rev (x::xs) = (rev xs) Q@ [x]

Work analysis of rev:

(n) with n the size of the input list.

rev

Equation for base case:

W, (0) = ¢, for some ¢,.

Equation for recursive clause, forn > O:

(n) =¢; + W, (n-1) + We(n-1,1), some c;.

rev rev

So:

rer (D) £ c; + W, (n-1) + c,(n-1), some c,.

Solving: W..,(0) = c,
W...(n) £ c; + W, (n-1) + c,(n-1)
W.,(n) £ c, + c,)n + W, (n-1)

Unrolling: l

W, (n)< ¢, +c,n+{c, +c,(n-1) +W__, (n-2) }

Solving: W, (0)
W

Co
c, + W

IA

rev (1) rev(n-1) + c,(n-1)

IA

W..,(n) c;, + c,'n + W__ (n-1)

rev

Unrolling:

W, (n)< ¢, +c,n+{c, +c,(n-1) +W__, (n-2) }

rev (

S c,+c,rn+c; +c,(n-1)

+ {cl +c,(n-2) +W__ (n-3) }

Solving: W_..,(0) = c,
W...(n) £ c; + W, (n-1) + c,(n-1)
W.,(n) £ c, + c,)n + W, (n-1)
Unrolling:

W, (n)< ¢, +c,n+{c, +c,(n-1) +W__, (n-2) }
S c,+c,rn+c; +c,(n-1)
+ {cl +c,(n-2) +W__ (n-3) }

. £ ¢, + nc;+ (n(n+1)/2) -c,

Solving: W_..,(0) = c,
W...(n) £ c; + W, (n-1) + c,(n-1)
W.,(n) £ c, + c,)n + W, (n-1)
Unrolling:
W, (n) =

<¢c, + n-c;+ (n(n+l)/2) -c,

So evaluation of rev (L) has O (n?) work,
with n the length of L.

Analyzing trev

(* trev : int list * int list -> int list ¥*)

fun trev ([], acc) = acc

| trev (x::xs, acc) = trev(xs, x::acc)

Code for trev:

fun trev ([], acc) = acc
| trev (x::xs, acc) = trev(xs, x::acc)

Work analysis of trev:

W..., (n,m) with n and m the sizes of the input lists.

Equation for base case:

Wi e (O,m) = c,, for some c,, all m.

Equation for recursive clause, forn > O:

Weeow(n,m) = c;+ W, .. (n-1,m+l), somec,, allm

Unrolling: | w

(n,m) =c; + ¢c; + W, (n-2,m+2)

n-c; + ¢, whichis O(n) .

trev

Analyzing tree summation

datatype tree = Empty
| Node of tree * int * tree

(* sum : tree -> int *)
REQUIRES: true

ENSURES: sum(T) adds all integers in T.
*)

fun sum (Empty : tree) : int = 0
| sum (Node (¢,x,r)) = (sum ¢) + (sum r) + x

Code for sum:

fun sum Empty = 0
| sum (Node({,x,r)) = (sum ¢) + (sum r) + x

Work analysis of sum:

(n) with n the number of nodes In the tree.

sum

Equation for base case:

W, (0) = ¢, for some c,.

Equation for recursive clause, forn > O:

(n) =c¢; + W,,(n) + W__(n.), somec,,

sum sum sum

with now n, the number of nodes in the left subtree
and n_ the number of nodes in the right subtree.

Solving: W, (0)
W

Co
c, + W,,.(n) + W__(n,)

sum (1)

Tree Method: (write down work that occurs at each node/leaf)

/ Note: Tree need
/' \ not be balanced.

CoCoCo Co

W.,(n) = cn + ¢c,(n+l)

Fact: A binary tree has n nodes iff it has n+1 leaves.

So evaluation of sum(T) has O (n) work.

(can also prove this by induction)

Side remark for the curious student

The fact that a binary tree has n nodes iff it has n+1 leaves
IS a special instance of the Euler Characteristic.

A slightly more general instance:

In an undirected graph:

#vertices - #edges = #components - #cycles

Code for sum:

fun sum Empty = 0
| sum (Node({,x,r)) = (sum ¢) + (sum r) + x

Is there any opportunity for parallelism?

YES: The recursive calls to sum can occur in parallel.

Code for sum:

fun sum Empty = 0
| sum (Node({,x,r)) = (sum ¢) + (sum r) + x

Span analysis of sum:

S. .y (n) With n the number of nodes In the tree.

Equation for base case:

S.um (0) = ¢, for some c,,.

Equation for recursive clause, forn > O:

S, (n) = ¢; + max{sS_,(n),S ., (n,)}, some c,.

Notice how max replaces + In the cost analysis.

Solving: S.,,(0)
S ¢um (1)

Co

c, + max{S__(n,),S_ ., (n.)}

ALAS! ltcould bethat n,=n-1 and n_=0.

Then the recursive equation becomes:
Seum(n) = ¢, + S_,,(n-1)

Therefore s_(n) Is O(n),

meaning we haven’t gained anything
from parallel evaluation.

Suppose however that the tree is balanced.

(This means that roughly half the remaining nodes
appear in each subtree as one descends the tree.)

' Then: S,,,(0)

S

sum(

n)

~NS
~N

Co
c, + max{S_,(n/2),S_,.(n/2)}

Suppose however that the tree is balanced.

(This means that roughly half the remaining nodes
appear in each subtree as one descends the tree.)

'Then: S.un (0) = ¢

S.yn (n) = ¢; + max{S_,,(n/2),S,,,(n/2)}
SO0 S_,.(n)=c; + S_,(n/2)
=c, + c; + S_,.,(n/4)
=c,+c, + - + ¢ + ¢

(Llog,nl+ 1) many times

Now S_,(n) IS O(log(n)),
meaning parallelism is significant.

We could also have obtained this result by
expressing span as S_,,(d),
with d the depth of the tree.

'Then: S.un (0) = ¢
S d) = ¢; + max{S_ (d-1),S_,(d")}

sum(

Note: d’ < d

We could also have obtained this result by
expressing span as S_,,(d),
with d the depth of the tree.

'Then: S.un (0) = ¢
S d) = ¢; + max{S_ (d-1),S_,(d")}

sum(

SO0 S_,.(d)=c; + S_,,(d-1)

sum(

Thus s__,(d) Is O0(d).

This result holds for all trees. (d=n is possible)

For balanced trees, d IS O(log(n)),
and we again see that parallelism helps.

Tree Method for balanced trees:
Cy
o
C,\ \
c/ \C\ /
\
/N / \

/

\ \
. > ¥ e ¢ ’ 9 e
o [& [& &
9 e * ® ®
. % © 4

I PN PN TNIN IV IV NN s e e
Cole © % % 0% &L L% el Pl % "t

This tree Is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:
C

o

Definition: A binary tree is balanced if it is either
() Empty

or (i) a Node whose two subtrees are balanced
with depths differing by at most 1.

I PN PN TNIN IV IV NN s e e
Colo & % 0% %% Tt eL % el oYl

This tree Is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:
C

o

More generally: A binary tree iIs balanced if it is either
() Empty

or (i) a Node whose two subtrees are balanced
with depths differing by at most a constant c.

I PN PN TNIN IV IV NN s e e
Colo & % 0% %% Tt eL % el oYl

This tree Is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:
C

o

Another definition (consequence of previous defs):

A binary tree is balanced if its depth d is roughly
log(n), with n the number of nodes in the tree.

C‘ C\ C\ C\ C\ C\ C\C|C| ctc(c'C'C, C\C'
ANSRY AN AN AN AN AN AN A N 2N A NG \ N4
Colo & % 0% %% Tt eL % el oYl

This tree Is perfectly balanced.
We use it as a model for balanced trees more generally.

Tree Method for balanced trees:

Work at each level

C, '
C\/ \/C\ aAC,
N
c\/ \C S "'C,

/I /\ C/C\C / \

/ & o %C
C\ C,\ C\ C, \) |
& e ¢ ’ . - ¢
. .. . ¢ o ¢ & “ :
’ & & ¥ [
5 ® d-l

I PN PN TNIN IV IV NN s e e d
(ol © % 0% %% Tt e S %% elo%io oo " QS

W(n) = c; (1+2+---4+2971) 4+¢,29 £ c291 500 (n).

(c = max(c;,c,))

Tree Method for balanced trees: Work at each level

CI
\ aC,
P
\ /C..\\ Ye
, <\ <y %C|
. : : ¢ & @ :
® % PS e * » &
C‘C\CCCCCCCCCCCC,C\C| Q‘HC_
' I\ ANAN l\l\ l\l\l\l\\\ C ; d
% 0% %% c% L% tefoo oot P C

W(n) = c; (1+2+---4+2971) 4+¢,29 £ c291 500 (n).
S(n) =

(c = max(c;,c,))

Tree Method for balanced trees:

Work at each level
C

C, '

C\/ \ C\ ;\CI
c./ \C\ C\/ = He,
/N /\ I\ /N

/

& o ¢ ’ . e ¢
: .. o ’ £l & & & :
» % % . y ’ 5 q-1
€, ¢, €, ¢ & ¢, ¢¢Ce0cec¢ €, a c,

IN TN ININ ININ IV IN I IS NN s e) d
Colo b % 0% %% % oS % Stelo%io % % ot Gl P

W(n) = c; (1+2+---4+2971) 4+¢,29 £ c291 500 (n).
S(n) = ¢; (1+1+:+1)+c, £ c(d+1),s00(log(n)).

(c = max (cl,co))

Sorting

datatype order = LESS | EQUAL | GREATER
Int.compare : int * int -> order

String.compare : string * string -> order

More generally, for some type t may have

compare : t * t -> order

Sorting

datatype order = LESS | EQUAL | GREATER

For lists:
L Is sorted Iff compare (x,y) —> LESS Oor EQUAL
whenever x appears to the leftof y Iin L.

LESS | EQUAL

[...,x,.. ¥,]

Insertion sort for lists

(* ins : int * int list -> int list
REQUIRES: L is sorted
ENSURES: ins(x,L) ==> a sorted permutation of x::L

*)
fun ins (x, []) = [x]
| ins (x, y::ys) = (case compare(x, y) of
GREATER => y::ins(x, ys)
| => X::Y::YS)

(Remember our definition of a sorted list:

[LESS | EQUAL

X, ¥,

Insertion sort for lists

(* ins : int * int list -> int list
REQUIRES: L is sorted
ENSURES: ins(x,L) ==> a sorted permutation of x::L

*)

fun ins (x, []) = [x]
| ins (x, y::ys) = (case compare(x, y) of
GREATER => y::ins(x, ys)
| => X::Y::YS)

(* isort : int list -> int list
REQUIRES: true
ENSURES: isort(L) ==> a sorted permutation of L
*)
fun isort [] = []
| isort (x::xs) = ins (x, isort xs)

Code for ins:

fun ins (x, []) = [x]
| ins (x, y::ys) = (case compare(x, y) of
GREATER => y::ins(x, ys)
| => xX::y::yS)
Work:

W. . (n) with n the list length.

Equations:
Wins (0) = ¢y
W;..(n) = c; + W, _(n-1), forfirst case clause
W. .(n) = c,, forsecond case clause

Consequently, W;_.(n) Is O(n).

Also, observe: no opportunity for parallel speedup.

Code for isort:

fun isort [] = []
| isort (x::xs) = ins (x, isort xs)

Work:
W. ...« (n) with n the list length.

Equations:
Wisort(o) = CO

W:.ort(n) =c; + Wy (n-1) + W. _(n-1)

ins

SO: Wisort(n) < c1 + c2.1:1 + Wisort(n_l)
(that should remind you of the recurrence for rev)
Consequently, W..__. (n) is O0(n?).

Again, no opportunity for parallel speedup.

Work

Span

Sorting

list isort list merge sort tree merge sort

O(n?) O(n-logn) | O(n-logn)
O((logn)?3

- o (logn)3)
O((logn)?)

(next week)

(next week)
(in 15-210)

That Is all.

Please have a good weekend.

See you Tuesday.

	15-150, Spring 2020Asymptotic Cost Analysis
	15-150, Spring 2020Asymptotic Cost Analysis
	Big-O Complexity Classes
	Big-O Complexity Classes
	Big-O Complexity Classes
	Big-O Complexity Classes
	Big-O Complexity Classes
	Analyzing append and rev
	Analyzing trev
	Analyzing tree summation
	Sorting
	Sorting
	Sorting
	Sorting
	Sorting
	Sorting
	Sorting
	insertion sort for lists
	insertion sort for lists
	insertion sort for lists
	Sorting
	Sorting
	Sorting
	ThatIsAll.pdf
	That is all.

