
15–150: Principles of Functional Programming

Origami (or: how to fold)

Frank Pfenning

Spring 2020

This notes is an attempt to demystify the fold family of functions.

Early in the study of functional programming, when advancing to higher-order functions, there
are a number of families of functions that are common across varies data types. One of them is
map, which in my experience is relatively easy to understand, the other is fold, which seems more
mysterious. But it doesn’t have to be! There is a simple geometric intuition when combined with
a careful analysis of the types makes it pretty straightforward.

We now show how to visualize and derive various instances of functions in the fold family,
hopefully demystifying them in the process.

1 Fold on Lists

The fold we discuss here is List.foldr or just foldr in SML. Its sibling function List.foldl

is specific to lists, while foldr is an instance of a generic function that applies to many different
types. Personally, I tend to think of List.foldl as just List.foldr on the reverse of a list.

In the remainder of this note, when we write fold as a function on
lists we mean the Standard ML function foldr.

val fold = List.foldr

Even though it is not the simplest instance, let’s start with lists. In SML, we have a predefined
type

datatype ’a list = nil | :: of ’a * ’a list

infixr ::

From this, we can easily extract the types of the constructors:

nil : ’a list

(op ::) : ’a * ’a list -> ’a list

As a reminder, (op inf) allows us to use infix operator inf as if it were a regular function or con-
structor. As another reminder, a constructor allows us to create expressions (as in 1::(2+3)::nil)
but it can also occur in a pattern so we can match against values of the type (as in case L of nil

=> "empty" | x::xs => "nonempty".
We can visualize a list of type t list with elements x1 : t, x2 : t and x3 : t with the following

diagram.

1



::

x1 ::

x2 ::

x3 nil

We are now interested in defining functions t list -> s for different types t and s. For example:

val sumList : int list -> int

val maxList : int list -> int

val length : ’a list -> int

val concat : (’a list) list -> ’a list

val map : (’a -> ’b) -> (’a list -> ’b list)

val reverse : ’a list -> ’a list

We will see how each of these can be programmed with a use of fold.
To see how fold works, we visualize replacing every data constructor with a function or constant,

depending on the type. In the example of lists, we have one constructor with arguments (::) and a
constant constructor (nil). By choosing different functions/constants for the constructors we can
then implement the different functions, such as the ones shown above. The generic diagram is

::

x1 ::

x2 ::

x3 nil

fold f z

f

x1 f

x2 f

x3 z

Before we analyze this picture in more generality, let’s consider the case of sumList. Clearly, if
the function f adds two integers, and the constant z is the integer 0, then fold f z will sum up
all the elements in the list:

2



::

x1 ::

x2 ::

x3 nil

fold (op +) 0

+

x1 +

x2 +

x3 0

(* sumList : int list -> int *)

val sumList = fold (op +) 0

In this example, we have f : int * int -> int and z : int.
Let’s now return to the general picture and show the type of each expression above it. We try

to make the result of the fold as general as possible, that is, we want fold f z : ’a list ->

’b. From the picture we can read off that f : ’a * ’b -> ’b and z : ’b if we want fold f
z : ’a list -> ’b. Therefore

fold : (’a * ’b -> ’b) -> ’b -> (’a list -> ’b)

where the second pair of parentheses is optional (but not the first!).

::

x1

’a

::

x2

’a

::

x3

’a

nil

’a list

’a list

’a list

fold f z

f

x1

’a

f

x2

’a

f

x3

’a

z

’b

’b

’b

Thinking about it more textually, to derive the types of f and z (which in turn determine the
type of fold), we replace the type ’a list in the constructors by ’b. That’s because we want
fold f z to return a function of type ’a list -> ’b.

(op ::) : ’a * ’a list -> ’a list (* f : ’a * ’b -> ’b *)

nil : ’a list (* z : ’b *)

As a second example, consider computing the maximum of a list of nonnegative integers (defined as
−1 if the list is empty). In this example we substitute int / ’a and int / ’b with f = Int.max

: int * int -> int and z = ~1 : int.

(* maxList : int list -> int

* REQUIRES x >= 0 for all x in L

* ENSURES maxList L = max{x | x in L or x = ~1} *)

val maxList = fold Int.max ~1

3



Here, it may help to remember the slogan “functions are values”. Alternatively (and equivalently),
we could have defined

fun maxList L = fold Int.max ~1 L

When the result of applying fold f z is polymorphic, we may need to add L as an argument as
shown here in order to circumvent the so-called value restriction in Standard ML.

Computing the length of the list is another interesting example, because the type of the elements
doesn’t matter (’a / ’a) but the result is an integer (int / ’b). So we need to find f and z such
that

f : ’a * int -> int

z : int

where f adds 1 to its second argument and z is the length of the empty list (since it is substituted
for nil).

fun length L = fold (fn (x,n) = n+1) 0 L

1.1 Concat

Let’s see if we can program concatenation

(* concat : (’a list) list -> ’a list

* REQUIRES true

* ENSURES concat [L1,...,Ln] = L1 @ L2 @ ... @ Ln

*)

To see it as an instance of fold we see the type of elements has to be ’a list while the type of
the result has to be ’a list. So we substitute ’a list / ’a and ’a list / ’b and get

(* f : ’a list * ’a list -> ’a list *)

(* z : ’a list *)

fold f z : (’a list) list -> ’a list

The constant z stands if for nil, so we need z = [].1 Looking at the ensures clause we see that f
= (op @), which has the required type. So:

fun concat Ls = fold (op @) [] Ls

::

L1 ::

L2 ::

L3 nil

fold (op @) []

@

L1 @

L2 @

L3 []

This code is also good (from the efficiency perspective since the append operations only copy what
is necessary (L1, L2, and L3).

1We could equally well write nil here, but we reserve it for the constructor we replace as a purely stylistic choice.

4



1.2 Map

Somewhat trickier is mapping a function g over a list. In general, map applies a given function to
every element in a data structure but otherwise leaves its structure intact. We have

map : (’a -> ’b) -> (’a list -> ’b list)

map g : ’a list -> ’b list

Pictorially, the action of map is

::

x1 ::

x2 ::

x3 nil

map g

::

g x1 ::

g x2 ::

g x3 []

Analyzing the type of map g for g : ’a -> ’b we see that ’a is arbitrary but we need to substitute
’b list / ’b in the types of f and z.

f : ’a * ’b list -> ’b list

z : ’b list

We see that f takes an element x and the already transformed list (of type ’b list), applies g to
x and constructs the new list.

f : ’a * ’b list -> ’b list = fn (x, ys) => (g x)::ys

z : ’b list = []

and therefore

fun map g = fold (fn (x,ys) => (g x)::ys) []

1.3 The Implementation of fold

We maybe should have done this before, but how do we actually implement fold? This is straight-
forward by pattern matching, again just keeping the picture in mind.

(* fold : (’a * ’b -> ’b) -> ’b -> (’a list -> ’b)

* REQUIRES true

* ENSURES fold f z [x1,...,xn] = f(x1, f(x2, ... f(xn, z)))

*)

fun fold f z nil = z

| fold f z (x::xs) = f(x, fold f z xs)

When the implementation of a function h : ’a list -> ’b as a fold isn’t immediately ob-
vious and the picture doesn’t help, we can also try to write it in a specific schematic textual form
that can then be translated into a fold. This form is

5



fun h nil = z
| h (x::xs) = f(x, h xs)

where it is important that f does not otherwise refer to x or xs or h.
First, let’s follows this process with naiveRev (which is not tail recursive).

fun naiveRev nil = []

| naiveRev (x::xs) = (naiveRev xs) @ [x]

Actually, it already has the form we want because the right-hand side in the second clause depends
only on naiveRev xs and x. To make it even more explicit, we can rewrite this to

fun naiveRev nil = []

| naiveRev (x::xs) = (fn (x’,ys) => ys @ [x’]) (x, naiveRev xs)

Here, we have renamed bound variable of x to x’ in the function to avoid any confusion between
variable names. Reading off the solution, we obtain

f : ’a * ’a list -> ’a list = fn (x’,ys) => ys @ [x’]

z : ’a list = []

and

fun naiveRev L = fold (fn (x,ys) => ys @ [x]) [] L

The more efficient tail-recursive reverse is more difficult to analyze. We have

fun revAppend nil acc = acc

| revAppend (x::xs) acc = revAppend xs (x::acc)

fun reverse L = revappend L []

This doesn’t quite have the right form, but we can “desugar” the curried patterns into explicit
functions

fun revAppend nil = fn acc => acc

| revAppend (x::xs) = fn acc => revAppend xs (x::acc)

fun reverse L = revAppend L []

First the types: in the type of fold, ’a remains unchanged, but we substitute ’a list -> ’a list

/ ’b because that’s what revAppend L returns.

f : ’a * (’a list -> ’a list) -> (’a list -> ’a list)

z : ’a list -> ’a list

Now we can read off f and z, where z is easy

z : ’a list -> ’a list = (fn acc => acc)

Remembering that application is left-associative, the right-hand side in the second clause is the
same as fn acc => (revAppend xs) (x::acc) so, indeed, the right-hand side depends only on x

and revAppend xs.

f : a’ * (’a list -> ’a list) -> (’a list -> ’a list)

f = fn (x, accFun) => fn acc => accFun (x::acc)

Putting everything together, we have

fun revAppend L = fold (fn (x, accFun) => fn acc => accFun (x::acc))

(fn acc => acc) L

fun reverse L = revAppend L []

6



2 Fold on Other Datatypes

Fold is a generic operation that can be defined on just about any datatype.2 The general schema
is to replace the constructors by functions or constants, depending on their type. We first consider
trees.

2.1 Binary Trees

datatype ’a tree = Node of ’a tree * ’a * ’a tree | Empty

Pictorially:

Node

Node

Node

Empty x1 Empty

x2 Empty

x3 Node

Empty x4 Empty

foldTree f z

f

f

f

z x1 z

x2 z

x3 f

z x4 z

We won’t bother drawing in the types, but from

Node : ’a tree * ’a * ’a tree -> ’a tree

Empty : ’a tree

foldTree f z : ’a tree -> ’b

we deduce

f : ’b * ’a * ’b -> ’b

z : ’b

For example:

val sumTree = foldTree (fn (suml, x, sumr) => suml + x + sumr) 0

Let’s define a function to create the “mirror image” a tree, by which we mean a reflection of
the tree about a vertical axis through the root. Creating the mirror image of a tree means that in
the type of f and z we substitute ’a / ’a and ’a tree / ’b.

f : ’a tree * ’a * ’a tree -> ’a tree

z : ’a tree

Referring back to the picture, we see that f just has to swap the left and right subtrees, keeping
the element in place, and z is just the empty tree.

fun mirror T = fold (fn (ml, x, mr) => Node(mr, x, ml)) Empty T

The foldTree function is easy to implement with recursion and pattern matching, following
the picture.

fun foldTree f z (Empty) = z

| foldTree f z (Node(l,x,r)) = f(foldTree f z l, x, foldTree f z r)
2I hesitate only when a datatype declaration contains functions.

7



2.2 Leafy Trees

A variant we have considered is a tree where the data are stored in the leaves.

datatype ’a lTree = Node of ’a lTree * ’a lTree | Leaf of ’a

Pictorially:

Node

Node

Leaf

x1

Leaf

x2

Node

Leaf

x3

Leaf

x4

foldLTree f g

f

f

g

x1

g

x2

f

g

x3

g

x4

Notice that here we have two constructors (Node and Leaf) and now constants. Since we want

foldLTree : ’a lTree -> ’b

we conclude that

Node : ’a lTree * ’a lTree -> ’a lTree f : ’b * ’b -> ’b

Leaf : ’a -> ’a lTree g : ’a -> ’b

For example, to sum the elements of the leafy tree with integers, the function f just has add up
the results from the subtrees and the function g just has to return the value of the integer stored
in the leaf.

(* sumLTree : int lTree -> int *)

val sumLTree = foldLTree (op +) (fn x => x)

Again, the function itself is also easy to implement

fun foldLTree f g (Node(l,r)) = f (foldLTree f g l, foldLTree f g r)

| foldLTree f g (Leaf(x)) = g x

2.3 Options

Even though it is not recursive, we can still define fold for a type such as ’a option

datatype ’a option = SOME of ’a | NONE

We just replace the constructors with corresponding functions (f) or constants (z).

SOME : ’a -> ’a option f : ’a -> ’b

NONE : ’a option z : ’b

foldOpt f z : ’a option -> ’b

foldOpt : (’a -> ’b) -> ’b -> ’a option -> ’b

fun foldOpt f z (SOME(x)) = f x

| foldOpt f z (NONE) = z

We see that foldOpt applies f to the value v in SOME(v) and returns a “default” value z in case of
NONE.

8



2.4 Natural Numbers

We can also explore fold operations on data types that are not polymorphic. Consider, for example,
natural numbers in unary form.

datatype nat = Succ of nat | Zero

The number 3, for example, is represented as

Succ(Succ(Succ(Zero))) : nat

or in tree form as
Succ

Succ

Succ

Zero

foldNat f z

f

f

f

z

In this case, there is no element type ’a so we just expect

foldNat f z : nat -> ’b

from which we conclude

f : ’b -> ’b

z : ’b

and we obtain the definition

foldNat : (’b -> ’b) -> ’b -> (nat -> ’b)

fun foldNat f z (Succ(x)) = f (foldNat f z x)

| foldNat f z (Zero) = z

This means that foldNat f z n just computes f(f(. . . f(z))) where f is iterated n times.

9


