15-150 Principles of Functional Programming Lecture 13 February 27, 2025 Michael Erdmann **Exceptions**, n-Queens,

& more success continuations

Exceptions

Declaring Raising Handling

Exceptions are useful for signaling errors, including violations of invariants. Exceptions can also be useful for control flow, analogous to continuations.

This line of code declares a new exception (constructor) called Silly. (If Silly already exists, this new Silly will

(If Silly already exists, this new Silly will shadow the earlier Silly.)

Silly : exn 1 the type for exceptions raise Silly: 'a if 3=4 then raise Silly else 9 : int So instantiate 'a to be int

and the expression reduces to value 9.

What about the type & value of

if 3=3 then raise Silly else 0?

The type is int. The expression does <u>not</u> reduce to a value. Instead SML will print <u>uncaught exception Silly</u>. We will discuss handling exceptions shortly.

<u>Handling</u> General form of an exception handler for expressione: <u>e handle</u> $P_1 \Rightarrow e_1$ $|P_2 \Rightarrow e_2$ $|Pn \Rightarrow e_n$

e, e, ..., en are expressions; must have the same type. Pis..., Pn are patterns; must match exceptions. If e reduces to a value V, that value is returned. If e instead raises an uncaught exception E, the handler will try to match E against the patterns Pis..., Pn (in sequential order). If E matches Pi, then SML will evaluate e;. If no pattern matches, E remains uncaught.

$\frac{f_{un}}{f(x,o)} = \frac{raise}{raise} Rdiv (x * x)$ $\int f(x,n) = \frac{if}{n < 0} \frac{then raise}{raise} Silly$ $\frac{else}{x} (real n)$

 $\frac{fun}{g(x,n)} = f(x,n) \frac{handle}{Rdiv(v)} \Rightarrow 0.0$ $|Rdiv(v) \Rightarrow v$

$\frac{f_{un}}{f(x,o)} = \frac{raise}{raise} Rdiv (x * x)$ $\int f(x,n) = \frac{if}{n \times 0} \frac{raise}{raise} Silly$ $\frac{else}{x} (real n)$

 $\frac{fun}{g(x,n)} = f(x,n) \frac{handle}{Rdiv(v)} \Rightarrow 0.0$ $|Rdiv(v) \Rightarrow v$

what are the values of:

- g(3.0,0) (3.0, 9.0
- g (3.0, 2) 1.5
- g (3.0, ~1) ~ 0.0

$\frac{f_{un}}{f(x,o)} = \frac{raise}{raise} Rdiv (x * x)$ $\int f(x,n) = \frac{if}{n \times 0} \frac{then raise}{raise} Silly$ $\frac{else}{x} (real n)$

$$fun g(x,n) = f(x,n) \underline{handle Silly} \Rightarrow 0.0$$

Suppose g does not
handle Rdiv.
$$what now are the values of:$$
$$g(3.0, 0) no value; uncaught exception Rdiv$$

$$g(3.0, \sim 1) \longrightarrow 0.0$$

n-Queens

Place n queens on a square nxn board without any two queens threatening each other.

(A queen threatens all locations in the same column, in the same row, and on lines with slope ±1 that pass through the queen's position.)

Three Implementations

- Exceptions
- Options
 - · Continuations

We will use these programming styles for Search

Example: Place 4 queens on a 4x4 board:

Start by placing a queen in column 1 and row 1:

column 3

column 3

OH NO! We cannot place the third queen!

column 3

OH NO! We cannot place the third queen! Let's backtrack to the placement of second queen.

Let's backtrack to the placement of second queen.

Let's try a new placement for the second queen.

Let's try a new placement for the second queen.

column 2

column 3

That succeeds!

column 3

OH NO! We cannot place the fourth queen!

OH NO! We cannot place the fourth queen! Let's backtrack to the placement of third queen.

Let's backtrack to the placement of third queen.

OH NO! Again cannot place the third queen!

column 3

OH NO! Again cannot place the third queen! Again backtrack to the placement of second queen.

Again backtrack to the placement of second queen.

OH NO! We cannot place the second queen!

column 2

OH NO! We cannot place the second queen! Let's backtrack to the placement of *first* queen.

column 1

Let's backtrack to the placement of *first* queen.

Eventually, placement of second queen succeeds:

Then placement of third queen succeeds:

row 1

column 3

Eventually, placement of **fourth** queen **succeeds**:

column 4

Solution obtained:

Code Overview

- (i,j) refers to ith column & jth row.
- Try to add a queen to column i, given threat-free queen placements in columns 1,...,i-1.
- Try successive rows, i.e., positions (i, 1), (i, 2)...
- If position (i,j) is threat free, place
 ith gueen there and move on to column i+1.
- If no position is threat-free in column i, backtrack to column i-1, undo the prior placement of a gueen in that column and search for a new placement.

(* threat : int * int → int * int → bool
 Decide whether two queen positions
 threaten each other.
*)
fun threat (x,y) (a,b) =
 x=a orelse y=b orelse x+y=a+b orelse x-y=a-b

(* threat : int * int -> int * int -> bool *) <u>fun</u> threat (x,y) (a,b) = x=a <u>orelse</u> y=b <u>orelse</u> x+y=a+b <u>orelse</u> x-y=a-b

(* conflict : int int -> (int + int) list -> bool Decide whether a given queen position is threatened by any queen position in a list of queen positions. fun conflict p = List. exists (threat p) List. exists : ('a -> bool) -> 'a list -> bool

(* addqueen : int * int * (int * int) list → (int * int) list try : int → (int * int) list queens : int → (int * int) list

- addqueen (i,n,Q) tries to place all remaining queens on an n×n board, starting in column i, assuming Q describes conflict-free queen placements in columns 1,...,i-1.
- addqueen uses local helper function try.
 try (j) starts its search from position (i,j).
- · queens (n) tries to place all queens on an nxn board.
- These functions raise exception Conflict when unsuccess ful.
 *)

exception Conflict <u>fun</u> addqueen (i, n, Q) = <u>let</u> fun try j = (if conflict (i, j) Q then raise Conflict else if i=n then (i,j) :: Q <u>else</u> addqueen (i+1, n, (i, j):: Q)handle Conflict => if j=n then raise Conflict else try (j+1) in try 1 end fun queens n = addqueen (1, n, [])
queens $4 \hookrightarrow [(4,3), (3,1), (2,4), (1,2]$ queens $1 \hookrightarrow [(1,1)]$ queens 2 does not return a value. Instead, exception Conflict

is uncaught at top level.

Implementation using options

$$\frac{fun}{fun} addqueen (i, n, Q) = \frac{let}{fun} try j = (\underline{case} (\underline{if} conflict} (i, j) Q then NONE)
else if i = n then SOME((i, j)::Q)
else addqueen (i + 1, n, (i, j)::Q))
of NONE $\Rightarrow \underline{if} j = n \underline{then} NONE$
else try (j + 1)
l result \Rightarrow result)
in try 1
end
fun queens $n = addqueen (1, n, [])$$$

Implementation using continuations

(* addqueen : int * int * (int * int) list $\rightarrow ((int * int) | ist \rightarrow 'a)$ $\rightarrow (unit \rightarrow 'a)$ 'a try : int -> 'a queens : int -> (int * int) list option (* Here we have the top-level queens function *****) again return a list option of queen placements. *) <u>fun</u> addqueen (i,n,Q) sc fc = <u>let</u><u>fun</u> try j = $\frac{\text{let}}{\text{fun}} \text{fc}'() =$ if j=n then fc() else try(j+1) in if conflict (i,j) Q then fc'() else if i=n then sc((i,j)::Q)else addqueen (i+1,n,(i,j)::Q) sc fc' end In try 1 end <u>fun</u> queens n = addqueen (1, n, []) Some $(fn() \Rightarrow NONE)$ More powerful continuations

We will allow success continuations to take failure continuations as arguments.

Doing so increases expressive power. We can then solve more problems simply by changing continuations slightly.

<u>datatype</u> 'a tree = Empty | Node of a tree * 'a * 'a tree (* find : ('a → bool) → 'a tree \rightarrow ('a \rightarrow (unit \rightarrow 'b) \rightarrow 'b) \rightarrow (unit \rightarrow 'b) ~ ~ *****) <u>fun</u> find p Empty sc fc = fc() | find p (Node(l,x,r)) sc fc = let fun fonew () = find pl sc (fn () => find pr sc fc) in if p(x) then sc x fenew <u>else</u> fenew() The success continuation receives element **x** and the failure continuation (fcnew end says what to do if p(x) had been false).

fun even $n = (n \mod 2 = 0)$

(* find first even integer encountered in pre-order traversal.) fun findfirst T = find even T $(\underline{fn} x \Rightarrow \underline{fn} f \Rightarrow SOME(x))$ $(f_n() \Rightarrow NONE)$ (* accumulate list of all even integers. *) fun findall T = find even T $(\underline{fn} \times \Rightarrow \underline{fn} f \Rightarrow \times :: f())$ $(\underline{fn}() \Rightarrow [1])$ (* count all the even integers. *) fun count T = find even T $(f_n x \Rightarrow f_n f \Rightarrow 1 + f())$ $(f_n() \Rightarrow 0)$

That is all.

Please enjoy Spring Break.

See you the Tuesday after, when we will talk about regular expressions.