15-150

Principles of Functional Programming

Slides for Lecture 14
Regular Expressions

March 11, 2025
Michael Erdmann

L essons:

* Regular Expressions

* Regular Languages
« Matcher

 Correctness
— Proof-Directed Debugging
— Termination

— Soundness and Completeness

Language Hierarchy

Class of Languages Recognizers Applications

General

Unrestricted Turing Machines Computation

Linear-bounded

. Some simple
Context-Sensitive automata P

type-checking

Nondeterministic

Context-Free automata Syntax checking
with one stack

Regular Finite Automata Tokenization

FT\
_{/

An example: Excursions from home

(home)

An example: Excursions from home

QC' “c” means “go to CMU, then go home”

An example: Excursions from home

“ b

means “go to CMU, then go home”

9 (;Q “0” means “get groceries, then go home”

An example: Excursions from home

“ b

means “go to CMU, then go home”

13 ”

g” means “get groceries, then go home”

3@0

w

13 7

w’ means “go for a walk, then home”

An example: Excursions from home

“ b

means “go to CMU, then go home”

13 ”

g” means “get groceries, then go home”

aQQ

w

13 7

w’ means “go for a walk, then home”

Description of excursions In a given week:

c(goto CMU once) cc (gotoCMU twice) ccc (goto CMU 3 times)

c* (go to CMU zero or more times)

cgc (goto CMU, then get groceries, then go to CMU)

An example: Excursions from home

“ b

13 ”

g” means “get groceries, t

aQQ

w

“‘w” means “go for a wal

Description of excursions In a given week:

nen go

K, then

gt+w (get groceries OR go for a walk)

means “go to CMU, then go home”

nome”

nome”

+ (zero or more times do one of the following:
(g W) get groceries OR go for a walk)

* (zero or more times do one of the following:
(g + W) C get groceries OR go for a walk;

after that go to CMU once)

Notation and Definitions

2. is an alphabet of characters. (nonempty, finite)
For example, £ = {a, b}.
(Using SML, #"a" : char.)

2* means the set of all finite-length strings
over alphabet %, I.e., with characters in X.

For example, aabba is in {a,b}*.
(Using SML, "aabba" : string.)

€ Is the empty string, containing no characters.
cisinx* | (UsingSML, "" : string.)

Notation and Definitions

A language over X is a subset of 2*.

(In other words, a language is a set of

finite-length strings with characters in .
A language may contain infinitely many strings.)

We are here interested in a particular
class of languages called regular languages.
The languages may have infinite size, but we
will describe them via a finite representation
called regular expressions, much like in the
excursion example.

Regular Expressions

Assume we have been given some alphabet 2.
A regular expression over X is any of the following:

Regular Expressions
Assume we have been given some alphabet 2.
A regular expression over X is any of the following:

a for every character a € .,

/

set symbol meaning “is in”
(don’t confuse with the empty string €)

Regular Expressions
Assume we have been given some alphabet 2.
A regular expression over X is any of the following:

a for every character a € .,
0 (a special symbol),

Regular Expressions

Assume we have been given some alphabet 2.
A regular expression over X is any of the following:

a for every character a € .,
0 (a special symbol),
1 (another special symbol),

Regular Expressions

Assume we have been given some alphabet 2.
A regular expression over X is any of the following:

a for every character a € .,
0 (a special symbol),
1 (another special symbol),
r,+r, with r, and r, regular expressions

(called alternation),

Regular Expressions

Assume we have been given some alphabet 2.
A regular expression over X is any of the following:

a for every character a € .,
0 (a special symbol),
1 (another special symbol),
r,+r, with r, and r, regular expressions

(called alternation),

rr, with r, and r, regular expressions
(called concatenation),

Regular Expressions

Assume we have been given some alphabet 2.
A regular expression over X is any of the following:

a for every character a € .,

0 (a special symbol),

1 (another special symbol),

r,+r, with r, and r, regular expressions

(called alternation),

rr, with r, and r, regular expressions
(called concatenation),

r* with r a regular expression

(called Kleene star).

Regular Expressions

Assume we have been given some alphabet 2.
A regular expression over X is any of the following:

(And use parentheses as needed.)

r,+r, with r, and r, regular expressions
(called alternation),
rr, withr,andr, regular_ expressions
(called concatenation),
r* with r a regular expression

(called Kleene star).

Regular Languages
Given regular expression r we define language L(r):
L(a) = {a} (singleton set) for every character a € X,
L(0) ={} (the empty language, no strings),
L(1) = {€} (the language consisting of the empty string),
L(ry+r,)={s| s eL(ry or s e L(r,)} (not exclusive),
L(r,r,) ={s;S,| s, € L(ry) and s, € L(r,) },

L(r*)={s| s =5;S,S,, some n=0, with each s, € L(r) }
(here we mean s = € when n=0).
So: € € L(r*) for all reqular expressions r.

Regular Languages

Let X be a given alphabet and L a subset of 2*.

We say that language L is regular if L = L(r)
for some regular expressionr.

(Fact: The class of regular languages over X Is
the minimal class containing the empty set and
all singleton subsets of £, and that Is closed
under union, concatenation, and Kleene star.)

(The class iIs also closed under complement:
L is regular iff 2*\ L is regular.)

Examples (assume X = {a, b})

L(a) ={a} (singleton set consisting of the string a)
L(aa) = {aa} (singleton set consisting of the string aa)
L((a + b)*) = X* (all finite-length strings with as and bs)

L((a + b)*aa(a + b)*) = all strings in £* containing
at least two consecutive as.

L((a+ 1)(b +ba))= P22

Examples (assume X = {a, b})

L(a) ={a} (singleton set consisting of the string a)
L(aa) = {aa} (singleton set consisting of the string aa)
L((a + b)*) = X* (all finite-length strings with as and bs)

L((a + b)*aa(a + b)*) = all strings in £* containing
at least two consecutive as.

L((a+ 1)(b + ba)*) = all strings in ¥* that do not
contain two consecutive as.

Examples (assume X = {a, b})

Comment: Different regular expressions
can give rise to the same regular language.

For instance:

_(ab + b*ab)
_((1 + b*)ab)
_((1 + bb*)ab)
_(b*ab)

_(b*ab + 0)
all strings in £* consisting of zero or more bs
followed by ab (and nothing thereafter).

Examples (assume X = {a, b})

Comment: Different regular expressions
can give rise to the same regular language.

For instance:

In particular, for any reg exp r:
_(ab + b*ab) L) = L(1 + rr¥)

(1 + b¥)ab)

_((1 + bb*)ab)

_(b*ab)

_(b*ab + 0)

all strings in £* consisting of zero or more bs
followed by ab (and nothing thereafter).

An Acceptor

We would like to implement a function that
decides whether a given string s Is in the
language L(r) of a given regular expression r.

(* accept : regexp -> string -> bool
REQUIRES: true (may change this later).
ENSURES: (accept r s) returns true if s € L(r);

(accept r s) returns false, otherwise.
*)
Think of accept as a simple parser/compiler.

(Still need to define the regexp type.)

Matching
Suppose r = (a + ab)(a + b).
Then L(r) = {aa, ab, aba, abb}.

How does the acceptor recognize that aba € L(r) ?
By backtracking search. (o

View r as a tree. @ @

Use up characters in aba
matching tree operations (@) () (@) &

determined by r.
a) &

Matching
Suppose r = (a + ab)(a + b).

(a+ab)(a+Db)
a ba

Then L(r) = {aa, ab, aba, abb}.

How does the acceptor recognize that aba € L(r) ?
By backtracking search. (o

View r as a tree.) @

Use up characters in aba
matching tree operations (@) () (@ &

determined by r. ?
Q) ©

First split of aba as a ba fails
on last character.

Matching (a+ab)a+b)
Suppose r = (a + ab)(a + b). =1k

a

Then L(r) = {aa, ab, aba, abb}.

How does the acceptor recognize that aba € L(r) ?
By backtracking search. (o

View r as a tree. @ @

Use up characters in aba
matching tree operations (@) () (@) &

determined by r.
a) &
\1

Second split of aba as ab a succeeds.

Matching

Suppose r = (a + ab)(a + b).
Then L(r) = {aa, ab, aba, abb}.

How does the acceptor recognize that aba € L(r) ?
By backtracking search.

Tonight, do an evaluation trace on this
example of the code we are about to write.

(Check yourself using today’s lecture page.)

A Matcher

We will implement the backtracking search
using a Boolean-specific continuation.

(* match : regexp -> char list ->
(char list -> bool) -> bool

REQUIRES: k is total (aside: weaker condition
simplifies termination proof).

ENSURES: (match r cs k) returns true if
CS can be split as cs=p@s, with
P representing a string in L (r)
and k(s) evaluating to true;

(match r cs k) returns false, otherwise.

*)

A Matcher

We will implement the backtracking search
using a Boolean-specific continuation.

(* match : regexp -> char list ->
(char list -> bool) -> bool

REQUIRES: k 1is total.

ENSURES: (match r cs k) returns true if
cs can be split as cs=pls, with
P representing a string in L (r)
and k (s) evaluating to true;

(match r cs k) returns false, otherwise.

* ; : ; : ..
) We use character lists instead of strings here for simplicity.
In discussions/proofs we sometimes treat them as identical.

Acceptor Based on Matcher Specs

(* match : regexp -> char list ->

(char list -> bool) -> bool
REQUIRES: k is total.

ENSURES: (match r cs k) = true if
cs=plds, with pe L(r) & k(s) = true;

(match r cs k) £ false, otherwise.

12

*)

accept : regexp -> string -> bool
REQUIRES: true
ENSURES: (accept r s)

(accept r s)

true if s € L(r);
false otherwise.

e 11

fun accept r s =

match r (String.explode s) List.null

Acceptor Based on Matcher Specs

(* match : regexp -> char list ->

(char list -> bool) -> bool
REQUIRES: k is total.

ENSURES: (match r cs k) = true if
cs=plds, with pe L(r) & k(s) = true;

(match r cs k) £ false, otherwise.

12

accept : regexp -> string -> bool
REQUIRES: true
ENSURES: (accept r s)

(accept r s)

true if s € L(r);
false otherwise.

e 11

*)

fun accept r s = turns a string into a char list

match r (String.explode s) List.null

List.null : 'a list -> bool decides whether a list is empty.

Implementation

We will define a datatype that mirrors the
mathematical definition of regular expressions.

We will implement a matcher that mirrors the
definition of a regular expression’s language.

Implementation

datatype regexp =

Char of char

Zero

One

Plus of regexp * regexp

Times of regexp * regexp

Star of regexp

Implementation

fun match

Implementation

fun match (Char a) cs k =

Implementation

fun match (Char a) cs k =
(case cs of
[1 =>
| c::cs' =

Implementation

fun match (Char a) cs k =

(case cs of
[1] => 277777

Recall: | (match r cs k) & true
If cs=pRs, with p€ L(r) &k(s) = true

L(a) =13}

Implementation

fun match (Char a) cs k =
(case cs of

[] => false
| c::cs' => 7?79?77)

Recall: | (match r cs k) & true
If cs=pRs, with p€ L(r) &k(s) = true

L(a) =13}

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c::ecs' => (a=c) andalso (k cs'))

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c::ecs' => (a=c) andalso (k cs'))

| match Zero = DPDVPP7

Recall: | (match r cs k) & true
If cs=pRs, with p€ L(r) &k(s) = true

L(O) =1}

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c::ecs' => (a=c) andalso (k cs'))

| match Zero = false

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c::ecs' => (a=c) andalso (k cs'))

| match Zero = false

| match One cs k = 29727777

Recall: | (match r cs k) = true
If cs=Zpls, with p € L(r) &k (s) = true

L(1) = {&}

Implementation

fun match (Char a) cs k =

(case cs of
[] => false
| c::cs' => (a=c) andalso (k cs'))

| match Zero = false

| match One cs k = k c¢s

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c::ecs' => (a=c) andalso (k cs'))

match Zero = false

match One ¢cs k = k c¢s

match (Plus(r,,r,)) cs k =

Implementation

~S

(match r ¢cs k) = true
If cs=plRs, with p € L(r) &k(s) = true

L(ry+r,)={s]| selL(r, or selL(r,)}

| match (Plus(r,,r,)) cs k
(match r; cs k) 7?7777

Implementation

fun match (Char a) cs k =
(case cs of
[] => false
| c::ecs' => (a=c) andalso (k cs'))

match Zero = false

match One ¢cs k = k c¢s

match (Plus(r,,r,)) cs k =
(match r; cs k) orelse (match r, cs k)

Implementation

fun match (Char a) cs k =

(case cs of
[] => false
| e¢::cs' => (a=c) andalso (k cs'))

match Zero = false

match One ¢cs k = k c¢s

match (Plus(r,,r,)) cs k =
(match r; cs k) orelse (match r, cs k)

| match (Times(r,,r,)) cs k =

Implementation

~)

(match r cs k) = true
If cs=Zpls, wWith p € L(r) &k(s) = true

L(ryry) ={ss:S,| s, €L(ry) and s, € L(r,) }

| match (Times(r,,r,)) cs k =
match r; cs P77

Implementation

~)

(match r cs k) = true
If cs=Zpls, wWith p € L(r) &k(s) = true

L(ryry) ={ss:S,| s, €L(ry) and s, € L(r,) }

| match (Times(r,,r,)) cs k =
match r, cs (fn cs'=> 77777

Implementation

fun

match (Char a) cs k =

(case cs of
[] => false
| e¢::cs' => (a=c) andalso (k cs'))

match Zero = false

match One ¢cs k = k c¢s

match (Plus(r,,r,)) cs k =

(match r; cs k) orelse (match r, cs k)
match (Times(r,,r,)) cs k =

match r, ¢s (fn cs' => match r, cs' k)

Implementation — Star clause

| match (Star r) cs k =

Implementation — Star clause

| match (Star r) cs k =

Recall: L(r*) =L(1 + rr¥)

We could make calls to previous clauses,
but let’'s implement this equation directly.

Implementation — Star clause

| match (Star r) cs k =

k cs orelse

Recall: L(r*) =L(1 + rr¥)

We could make calls to previous clauses,
but let’'s implement this equation directly.

Implementation — Star clause

| match (Star r) cs k =
k cs orelse

match r ¢cs (fn cs' =>

Recall: L(r*) =L(1 + rr¥)

We could make calls to previous clauses,
but let’'s implement this equation directly.

Implementation — Star clause

| match (Star r) cs k =
k cs orelse
match r ¢cs (fn cs' =>
match (Star r) cs' k)

Recall: L(r*) =L(1 + rr¥)

We could make calls to previous clauses,
but let’'s implement this equation directly.

There Is a potential bug.

| match (Star r) cs k =

(k cs) orelse (match r ¢cs (fn ¢cs' => match (Star r) cs' k))

Proof-Directed Debugging

| match (Star r) cs k =
(k cs) orelse (match r ¢cs (fn ¢cs' => match (Star r) cs' k))

Imagine trying to prove that (match (Star r) cs k)

reduces to a value as part of some larger induction
proof that match always terminates (returns a value)

when given input satisfying the specs.

In the Induction Hypothesis we may assume
that (match r es k) reduces to a value

whenever k Is total. So we need to establish
that (fn cs' => match (Star r) cs' k) IS total.
Now we are in a circular argument!

Proof-Directed Debugging

| match (Star r) cs k =

(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))

A possible way out: We don't really need to establish that
(fn cs' => match (Star r) cs' k)

IS total, merely that it returns values when called on suffixes cs''
of the given e¢s. Maybe a second induction on es will help.

If we could show that e¢s' Is a proper suffix of ¢s,
we could perhaps establish eventual termination.

Proof-Directed Debugging
kl

| match (Star r) cs k =

(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))

A possible way out: We don't really need to establish that
(fn cs' => match (Star r) cs' k)

IS total, merely that it returns values when called on suffixes cs''
of the given e¢s. Maybe a second induction on es will help.

If we could show that e¢s' Is a proper suffix of ¢s,
we could perhaps establish eventual termination.

ALAS, that need not be true:
match (Star One) [#"a"] List.null

will loop forever since List.null [#"a"] = false
and since match One cs k' will pass allofestok'.

Proof-Directed Debugging

kl

| match (Star r) cs k = 1

(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))

This issue arises when the empty string is In L(x).

If we could show that es' is a proper suffix of es,
we could perhaps establish eventual termination.

ALAS, that need not be true:
match (Star One) [#"a"] List.null

will loop forever since List.null [#"a"] = false
and since match One cs k' will pass allofestok'.

Two possible fixes to avoid infinite loops

1. Change the specs:
- Require regular expressions to be
In standard form (definition shortly).

2. Change the code:

- EXxplicitly check that e¢s' Is a
proper suffix of cs.

Two possible fixes to avoid infinite loops

1. Change the specs

Definition:
A regular expression r is in standard form iff
for any subexpression Star(r') of r,
L(x') does not contain the empty string .

Fact: It is possible to convert any regular
expression r into a regular expression g

that is in standard form such that L(x) = L(g).

Consequently, If we REQUIRE reqular
expressions to be in standard form we avoid

Infinite loops without losing any regular languages.
(Preprocess r into standard form, then call match.)

Two possible fixes to avoid infinite loops

2. Change the code

| match (Star r) cs k =
k cs orelse
match r ¢cs (fn cs' =
properSuffix (cs',cs)
andalso
match (Star r) cs' k)

Two possible fixes to avoid infinite loops

2. Change the code

| match (Star r) cs k
k cs orelse

match r ¢cs (fn cs'

This is new properSuffix (cs',cs)
' andalso

match (Star r) cs' k)

The code checks that es' Is a proper suffix of ¢s.

Sketch of a Proof of Correctness

. Prove Termination

Show that (match r e¢s k) returns a value
for all arguments r, ¢s, k satisfying REQUIRES Specs.
(This proof is surprisingly difficult. We assume it here.)

. Prove Soundness and Completeness

Given termination, we can simplify the ENSURES specs

In a convenient way, then perform structural induction.
(We will write out one of the recursive cases here.)

Soundness & Completeness,
Assuming Termination

Here are the given ENSURES specs for match:

(match r cs k) = true if cs=pls,
with p € L(r) and k(s) = true;

(match r cs k) = false, otherwise.

Given termination, we can rephrase the specs as:

~S

(match r cs k) = true if and only if there exist p and s
such that csZ=p@s, p€ L(r), and k(s) = true.

That Is the theorem we must prove.

The “if” part is sometimes called “completeness”.
The “only if” part is sometimes called “soundness”.

Theorem For all values

Y : regexp, CS : char list, k : char 1list -> bool, with k total,

(match r cs k) = true
If and only if

there exist p and s such that
cs = p@s, p€ L(x), and k(s) = true.

Theorem For all values

Y : regexp, CS : char list, k : char 1list -> bool, with k total,

(match r cs k) = true
If and only if

there exist p and s such that
cs = p@s, p€ L(x), and k(s) = true.

(We are assuming termination as a lemma.)

Theorem For all values

Y : regexp, CS : char list, k : char 1list -> bool, with k total,

(match r cs k) = true
If and only if

there exist p and s such that
cs = p@s, p€ L(x), and k(s) = true.

(We are assuming termination as a lemma.)

Proof By structural induction on r.

Theorem For all values

Y : regexp, CS : char list, k : char 1list -> bool, with k total,

(match r cs k) = true
If and only if

there exist p and s such that
cs = p@s, p€ L(x), and k(s) = true.

(We are assuming termination as a lemma.)

Proof By structural induction on r.

Base Cases: Zero, One, Char (a) for every a:char.

Theorem For all values

Y : regexp, CS : char list, k : char 1list -> bool, with k total,

(match r cs k) = true
If and only if

there exist p and s such that
cs = p@s, p€ L(x), and k(s) = true.

(We are assuming termination as a lemma.)

Proof By structural induction on r.

Base Cases: Zero, One, Char (a) for every a:char.

Inductive Cases:
Plus(r,,r,), Times(r,,r,), Star(r).

Theorem For all values

Y : regexp, CS : char list, k : char 1list -> bool, with k total,

(match r cs k) = true
If and only if

there exist p and s such that
cs = p@s, p€ L(x), and k(s) = true.

(We are assuming termination as a lemma.)

Proof By structural induction on r.

Base Cases: Zero, One, Char (a) for every a:char.
Inductive Cases:
Plus(r,,r,), Times(r,,r,), Star(r).

We will discuss only the P1lus case here, as an example.
(See also today’s online notes, including another proof technique.)

Inductive Case r = Plus (r,,r,), forsome r,,r, :

IH: For i=1,2 and for all values es & k, with k total,

(match r; cs k) = true Iff there exist p&s
such that cs = p@s, pel(r;), & k(s) = true.

NTS: For all values es & k, with k total,

(match (Plus(r,,r,)) cs k) = true Iiff there exist p&s
such that cs = p@s, peL(Plus(r,;,r,)), & k(s) = true.

(We will prove the two parts of the “iff” separately.)

. Suppose (match (Plus(r,,r,)) cs k) = true.

NTS: There exist p&s such that cs = p@s,
p €L(Plus(r;,r,)), &k (s)= true.

Showing:

true
[assumption] = (match (Plus(r,,r,)) cs k)
[Plus] = (match r; cs k) orelse (match r, cs k)

. One or both of the arguments to orelse must be true.

Let us suppose it is the first argument (proof similar for second).
SO0 (match r; cs k) = true.
By IH for r;,

there exist p&s s.t. cs = p@s, pelL(r,), &k (s)= true.
Then also p e L(Plus (r,, r,)), by language definition for Plus.

That finishes this part of the proof (soundness).

Il. Suppose there exist p&s such that es = p@s,
p €L(Plus(r,,r,)), &k (s)= true.

NTS: (match (Plus(r,,r,)) cs k) = true.

Showmg. (match (Plus(r,;,r,)) cs k)
[Plus] = (match r; cs k) orelse (match r, cs k)
[see below] = true

By supposition, there exist p&s such that cs = p@s,
peL(Plus(r,,r,)), &k (s)= true. By the language
definition for P1us, p€L(x,;) and/or p € L(x,).
Ifpel(x;),then (match r; cs k) = true by IH for r,.
Otherwise, (match r; cs k) = false by termination,
pe€l(r,), and (match r, cs k) = true by IH for r,.

That finishes this part of the proof (completeness), and so the P1us case.

That Is all.

Please have a good lab.

See you Thursday.

We will discuss another matcher,
iInspired by staging and combinators.

