
15-150

Principles of Functional Programming

Slides for Lecture 14

Regular Expressions

March 11, 2025

Michael Erdmann



Lessons:

• Regular Expressions

• Regular Languages

• Matcher

• Correctness

– Proof-Directed Debugging

– Termination

– Soundness and Completeness



Language Hierarchy
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type-checking

Unrestricted Turing Machines
General

Computation
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An example:  Excursions from home

“c” means “go to CMU, then go home”

“g” means “get groceries, then go home”

“w” means “go for a walk, then home”

c (go to CMU once) cc (go to CMU twice)

c* (go to CMU zero or more times)

ccc (go to CMU 3 times)

cgc (go to CMU, then get groceries, then go to CMU)

Description of excursions in a given week:



An example:  Excursions from home

“c” means “go to CMU, then go home”

“g” means “get groceries, then go home”

“w” means “go for a walk, then home”

g + w (get groceries  OR go for a walk)

(g + w)*c
(zero or more times do one of the following:

get groceries  OR go for a walk;

after that go to CMU once)

(g + w)* (zero or more times do one of the following:

get groceries  OR go for a walk)

Description of excursions in a given week:



Notation and Definitions

S is an alphabet of characters.

For example,  S = a, b.

(Using SML ,  #"a" : char.)

S* means the set of all finite-length strings    

over alphabet S, i.e., with characters in S.

For example, aabba is in {a,b}*.

(Using SML ,  "aabba" : string.)

e is the empty string, containing no characters.

(Using SML ,  "" : string.)

(nonempty, finite)

e is in S*.



Notation and Definitions

A language over S is a subset of S*.

(In other words, a language is a set of

finite-length strings with characters in S.

A language may contain infinitely many strings.)

We are here interested in a particular

class of languages called regular languages.

The languages may have infinite size, but we

will describe them via a finite representation

called regular expressions, much like in the

excursion example.



Regular Expressions

Assume we have been given some alphabet S.

A regular expression over S is any of the following:



Regular Expressions

Assume we have been given some alphabet S.

A regular expression over S is any of the following:

a for every character a  S,

set symbol meaning “is in”
(don’t confuse with the empty string e) 
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a for every character a  S,

0 (a special symbol),

1 (another special symbol),

r1r2 with r1 and r2 regular expressions
(called concatenation),
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r1 + r2 with r1 and r2 regular expressions
(called alternation),
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Regular Expressions

Assume we have been given some alphabet S.

A regular expression over S is any of the following:

a for every character a  S,

0 (a special symbol),

1 (another special symbol),

r1r2 with r1 and r2 regular expressions
(called concatenation),

r1 + r2 with r1 and r2 regular expressions
(called alternation),

(called Kleene star).

(And use parentheses as needed.)

r* with r a regular expression



L(r1 + r2) = { s | s  L(r1) or  s  L(r2) } (not exclusive),

Regular Languages

Given regular expression r we define language L(r): 

L(a) = {a} (singleton set) for every character a  S,

L(0) = { } (the empty language, no strings),

L(1) = {e} (the language consisting of the empty string),

(here we mean s = e when n=0). 

So:  e  L(r* ) for all regular expressions r.

L(r1r2) = { s1s2 | s1  L(r1) and  s2  L(r2) },

L(r* ) = { s | s = s1s2
sn, some n0, with each si  L(r) }



Regular Languages

Let S be a given alphabet and L a subset of S*.

We say that language L is regular if L = L(r) 

for some regular expression r.

(The class is also closed under complement:

L is regular iff  S* \ L is regular.)

(Fact:  The class of regular languages over S is 

the minimal class containing the empty set and 

all singleton subsets of S, and that is closed 

under union, concatenation, and Kleene star.)



Examples  (assume S = a, b)

L(a) = {a} (singleton set consisting of the string a)

L(aa) = {aa} (singleton set consisting of the string aa)

L((a + b)*) = S* (all finite-length strings with as and bs)

L((a + b)*aa(a + b)*) = all strings in S* containing

at least two consecutive as.

L((a + 1)(b + ba)*) = ?????



Examples  (assume S = a, b)

L(a) = {a} (singleton set consisting of the string a)

L(aa) = {aa} (singleton set consisting of the string aa)

L((a + b)*) = S* (all finite-length strings with as and bs)

L((a + b)*aa(a + b)*) = all strings in S* containing

at least two consecutive as.

L((a + 1)(b + ba)*) = all strings in S* that do not

contain two consecutive as.



Examples  (assume S = a, b)

Comment:   Different regular expressions

can give rise to the same regular language.

For instance:

L(ab + b*ab) 

= L((1 + b*)ab) 

= L((1 + bb*)ab) 

= L(b*ab)

= L(b*ab + 0)

= all strings in S* consisting of zero or more bs

followed by ab (and nothing thereafter). 



Examples  (assume S = a, b)

Comment:   Different regular expressions

can give rise to the same regular language.

For instance:

L(ab + b*ab) 

= L((1 + b*)ab) 

= L((1 + bb*)ab) 

= L(b*ab)

= L(b*ab + 0)

= all strings in S* consisting of zero or more bs

followed by ab (and nothing thereafter). 

In particular, for any reg exp r:

L(r*) = L(1 + rr*) 



An Acceptor

We would like to implement a function that 

decides whether a given string s is in the 

language L(r) of a given regular expression r.

(* accept : regexp -> string -> bool

REQUIRES: true (may change this later).

ENSURES: (accept r s) returns true if s  L(r);

(accept r s) returns false, otherwise.

*)

Think of accept as a simple parser/compiler.

(Still need to define the regexp type.)



Matching

Suppose r = (a + ab)(a + b).

Then L(r) = {aa, ab, aba, abb}.

How does the acceptor recognize that aba L(r) ?

By backtracking search.

View r as a tree. 

b

a
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ba
Use up characters in aba

matching tree operations

determined by r.



Matching

Suppose r = (a + ab)(a + b).

Then L(r) = {aa, ab, aba, abb}.

How does the acceptor recognize that aba L(r) ?

By backtracking search.

View r as a tree.

First split of aba as a ba fails

on last character.

?



b

a

a

ba
Use up characters in aba

matching tree operations

determined by r.

(a + ab)(a + b)

a          ba



Matching

Suppose r = (a + ab)(a + b).

Then L(r) = {aa, ab, aba, abb}.

How does the acceptor recognize that aba L(r) ?

By backtracking search.

View r as a tree.

Second split of aba as ab a succeeds.



b

a

a

ba
Use up characters in aba

matching tree operations

determined by r.

(a + ab)(a + b)

ab        a



Matching

Suppose r = (a + ab)(a + b).

Then L(r) = {aa, ab, aba, abb}.

How does the acceptor recognize that aba L(r) ?

By backtracking search.

Tonight, do an evaluation trace on this 

example of the code we are about to write.

(Check yourself using today’s lecture page.)



A Matcher

We will implement the backtracking search 

using a Boolean-specific continuation.

(* match : regexp -> char list -> 

(char list -> bool) -> bool

REQUIRES: k is total (aside: weaker condition 

simplifies termination proof).

ENSURES: (match r cs k) returns true if

cs can be split as cs  p@s, with

p representing a string in L(r)

and k(s) evaluating to true;

(match r cs k) returns false, otherwise.

*)



A Matcher

We will implement the backtracking search 

using a Boolean-specific continuation.

(* match : regexp -> char list -> 

(char list -> bool) -> bool

REQUIRES: k is total.

ENSURES: (match r cs k) returns true if

cs can be split as cs  p@s, with

p representing a string in L(r)

and k(s) evaluating to true;

(match r cs k) returns false, otherwise.

*) We use character lists instead of strings here for simplicity.
In discussions/proofs we sometimes treat them as identical.



Acceptor Based on Matcher Specs

fun accept r s = 

match r (String.explode s) List.null

accept : regexp -> string -> bool

REQUIRES: true

ENSURES: (accept r s)  true if s  L(r);

(accept r s)  false otherwise.

*)

(* match : regexp -> char list -> 

(char list -> bool) -> bool

REQUIRES: k is total.

ENSURES: (match r cs k)  true if

cs  p@s, with p  L(r) & k(s)  true;

(match r cs k)  false, otherwise.



Acceptor Based on Matcher Specs

fun accept r s = 

match r (String.explode s) List.null

turns a string into a char list

List.null :'a list -> bool decides whether a list is empty.

accept : regexp -> string -> bool

REQUIRES: true

ENSURES: (accept r s)  true if s  L(r);

(accept r s)  false otherwise.

*)

(* match : regexp -> char list -> 

(char list -> bool) -> bool

REQUIRES: k is total.

ENSURES: (match r cs k)  true if

cs  p@s, with p  L(r) & k(s)  true;

(match r cs k)  false, otherwise.



Implementation

We will define a datatype that mirrors the

mathematical definition of regular expressions.

We will implement a matcher that mirrors the

definition of a regular expression’s language.



Implementation

datatype regexp =   

Char of char

| Zero

| One

| Plus of regexp * regexp

| Times of regexp * regexp

| Star of regexp



Implementation

fun match
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Recall:
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(case cs of
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L(a) = {a}

Recall:
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Implementation

fun match (Char a) cs k = 

(case cs of

[] => false

| c::cs' => (a=c) andalso (k cs'))

| match Zero _ _ = ?????

Recall:

L(0) = { }

(match r cs k)  true 

if cs  p@s, with p  L(r)& k(s)  true



Implementation

fun match (Char a) cs k = 

(case cs of
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Implementation

fun match (Char a) cs k = 

(case cs of

[] => false

| c::cs' => (a=c) andalso (k cs'))

| match Zero _ _ = false

| match One cs k = ?????

Recall:

L(1) = {e}

(match r cs k)  true 

if cs  p@s, with p  L(r)& k(s)  true
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(case cs of
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| match Zero _ _ = false

| match One cs k = k cs



Implementation

fun match (Char a) cs k = 

(case cs of

[] => false

| c::cs' => (a=c) andalso (k cs'))

| match Zero _ _ = false

| match One cs k = k cs

| match (Plus(r1,r2)) cs k =



fun match (Char a) cs k = 

(case cs of

[] => false

| c::cs' => (a=c) andalso (k cs'))

| match Zero _ _ = false

| match One cs k = k cs

| match (Plus(r1,r2)) cs k =

(match r1 cs k) orelse (match r2 cs k)

(match r cs k)  true 

if cs  p@s, with p  L(r)& k(s)  true

L(r1 + r2) = { s | s  L(r1) or  s  L(r2) }

Implementation

?????
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(match r1 cs k) orelse (match r2 cs k)
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(case cs of
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fun match (Char a) cs k = 

(case cs of

[] => false

| c::cs' => (a=c) andalso (k cs'))

| match Zero _ _ = false

| match One cs k = k cs

| match (Plus(r1,r2)) cs k =

(match r1 cs k) orelse (match r2 cs k)

| match (Times(r1,r2)) cs k =

match r1 cs (fn cs’ => match r2 cs’ k)

(match r cs k)  true 

if cs  p@s, with p  L(r)& k(s)  true

L(r1r2) = { s1s2 | s1  L(r1) and  s2  L(r2) }

Implementation

?????



fun match (Char a) cs k = 

(case cs of

[] => false
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Implementation

fun match (Char a) cs k = 

(case cs of

[] => false

| c::cs' => (a=c) andalso (k cs'))

| match Zero _ _ = false

| match One cs k = k cs

| match (Plus(r1,r2)) cs k =

(match r1 cs k) orelse (match r2 cs k)

| match (Times(r1,r2)) cs k =

match r1 cs (fn cs' => match r2 cs' k)
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We could make calls to previous clauses,

but let’s implement this equation directly.
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Implementation – Star clause

| match (Star r) cs k =

k cs   orelse 

match r cs (fn cs' => 

match (Star r) cs' k) 

Recall: L(r*) = L(1 + rr*) 

We could make calls to previous clauses,

but let’s implement this equation directly.



Implementation – Star clause

| match (Star r) cs k =

k cs   orelse 

match r cs (fn cs' => 

match (Star r) cs' k) 

Recall: L(r*) = L(1 + rr*) 

We could make calls to previous clauses,

but let’s implement this equation directly.



There is a potential bug.

| match (Star r) cs k =

(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))



Proof-Directed Debugging

| match (Star r) cs k =

(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))

In the Induction Hypothesis we may assume
that  (match r cs k) reduces to a value

whenever k is total.  So we need to establish

that (fn cs' => match (Star r) cs' k) is total.

Now we are in a circular argument!

Imagine trying to prove that (match (Star r) cs k)

reduces to a value as part of some larger induction
proof that  match always terminates (returns a value)

when given input satisfying the specs.



Proof-Directed Debugging

| match (Star r) cs k =

(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))

A possible way out:  We don’t really need to establish that
(fn cs' => match (Star r) cs' k)

is total, merely that it returns values when called on suffixes cs'

of the given cs.  Maybe a second induction on cs will help.

If we could show that cs' is a proper suffix of cs,

we could perhaps establish eventual termination.
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| match (Star r) cs k =

(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))

A possible way out:  We don’t really need to establish that
(fn cs' => match (Star r) cs' k)

is total, merely that it returns values when called on suffixes cs'

of the given cs.  Maybe a second induction on cs will help.

If we could show that cs' is a proper suffix of cs,

we could perhaps establish eventual termination.

ALAS, that need not be true:

match (Star One) [#"a"] List.null 

will loop forever since  List.null [#"a"]  false

and since  match One cs k' will pass all of cs to k'.

k'



Proof-Directed Debugging

| match (Star r) cs k =

(k cs) orelse (match r cs (fn cs' => match (Star r) cs' k))

A possible way out:  We don’t really need to establish that
(fn cs' => match (Star r) cs' k)

is total, merely that it returns values when called on suffixes cs'

of the given cs.  Maybe a second induction on cs will help.

If we could show that cs' is a proper suffix of cs,

we could perhaps establish eventual termination.

ALAS, that need not be true:

match (Star One) [#"a"] List.null 

will loop forever since  List.null [#"a"]  false

and since  match One cs k' will pass all of cs to k'.

k'

This issue arises when the empty string is in L(r).



Two possible fixes to avoid infinite loops

1. Change the specs:

- Require regular expressions to be

in standard form (definition shortly).

2. Change the code:

- Explicitly check that cs' is a 

proper suffix of cs.



Two possible fixes to avoid infinite loops

1. Change the specs

A regular expression r is in standard form  iff

for any subexpression Star(r') of r, 

L(r') does not contain the empty string e.

Definition: 

Fact: It is possible to convert any regular
expression r into a regular expression q

that is in standard form such that L(r) = L(q).

Consequently, if we REQUIRE regular

expressions to be in standard form we avoid

infinite loops without losing any regular languages. 
(Preprocess r into standard form, then call match.)



Two possible fixes to avoid infinite loops

| match (Star r) cs k =

k cs   orelse 

match r cs (fn cs' =>

properSuffix (cs',cs)

andalso 

match (Star r) cs' k) 

2. Change the code



Two possible fixes to avoid infinite loops

| match (Star r) cs k =

k cs   orelse 

match r cs (fn cs' =>

properSuffix (cs',cs)

andalso 

match (Star r) cs' k) 

This is new.

2. Change the code

The code checks that cs' is a proper suffix of cs. 



Sketch of a Proof of Correctness

1. Prove Termination

2. Prove Soundness and Completeness

Show that (match r cs k) returns a value

for all arguments r, cs, k satisfying REQUIRES specs.

(This proof is surprisingly difficult.  We assume it here.)

Given termination, we can simplify the ENSURES specs

in a convenient way, then perform structural induction.

(We will write out one of the recursive cases here.)



Soundness & Completeness, 

Assuming Termination

Here are the given ENSURES specs for match:

Given termination, we can rephrase the specs as:

(match r cs k)  true if and only if there exist p and s 

such that cs  p@s, p  L(r), and k(s)  true.

That is the theorem we must prove.

The “if” part is sometimes called “completeness”.

The “only if” part is sometimes called “soundness”.

(match r cs k)  true if cs  p@s, 

with p  L(r) and k(s)  true;

(match r cs k)  false, otherwise.



Theorem For all values

r : regexp, cs : char list, k : char list -> bool,  with k total,

(match r cs k)  true

if and only if

there exist p and s such that

cs  p@s, p  L(r), and k(s)  true.
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Proof
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By structural induction on r.

Base Cases: Zero, One, Char(a) for every a:char.

Inductive Cases: 

Plus(r1,r2), Times(r1,r2), Star(r).



Theorem For all values

r : regexp, cs : char list, k : char list -> bool,  with k total,

(match r cs k)  true

if and only if

there exist p and s such that

cs  p@s, p  L(r), and k(s)  true.

Proof

(We are assuming termination as a lemma.)

By structural induction on r.

Base Cases: Zero, One, Char(a) for every a:char.

Inductive Cases: 

Plus(r1,r2), Times(r1,r2), Star(r).

We will discuss only the Plus case here, as an example.

(See also today’s online notes, including another proof technique.)



IH:

NTS:

(We will prove the two parts of the “iff” separately.) 

Inductive Case r = Plus(r1,r2), for some r1,r2 :

For all values cs & k,  with k total,

(match (Plus(r1,r2)) cs k)  true iff there exist p&s

such that cs  p@s, p L(Plus(r1,r2)), & k(s)  true.

For i=1,2 and for all values cs & k,  with k total,

(match ri cs k)  true iff there exist p&s

such that cs  p@s, p L(ri), & k(s)  true.



I.

NTS:

Suppose (match (Plus(r1,r2)) cs k)  true.

There exist p&s such that cs  p@s,

pL(Plus(r1,r2)), & k(s) true.

Showing:
true

 (match (Plus(r1,r2)) cs k)

 (match r1 cs k) orelse (match r2 cs k) 

[assumption]

[Plus]

 One or both of the arguments to orelse must be true.

Let us suppose it is the first argument (proof similar for second). 

So (match r1 cs k)  true.

Then also p L(Plus(r1,r2)), by language definition for Plus.

By IH for r1, 

there exist p&s s.t. cs  p@s, p L(r1), & k(s) true .

That finishes this part of the proof (soundness). 



II.

NTS: (match (Plus(r1,r2)) cs k)  true.

Suppose there exist p&s such that cs  p@s,

pL(Plus(r1,r2)), & k(s) true.

Showing:
(match (Plus(r1,r2)) cs k)

 (match r1 cs k) orelse (match r2 cs k) [Plus]

That finishes this part of the proof (completeness), and so the Plus case. 

true[see below]

By supposition, there exist p&s such that cs  p@s,

p L(Plus(r1,r2)), & k(s) true.   By the language 

definition for Plus,  pL(r1)  and/or  p L(r2).

If pL(r1) , then (match r1 cs k)  true by IH for r1.

Otherwise, (match r1 cs k)  false by termination,

p L(r2), and (match r2 cs k)  true by IH for r2.



That is all.

Please have a good lab.

See you Thursday.

We will discuss another matcher, 

inspired by staging and combinators.


