
15-150

Principles of Functional Programming

Regular Expressions using

Combinators & Staging

Lecture 15

March 13, 2025

Michael Erdmann

Recall from last time:

datatype regexp =

Char of char

| Zero

| One

| Plus of regexp * regexp

| Times of regexp * regexp

| Star of regexp

(* match : regexp -> char list ->

(char list -> bool) -> bool

REQUIRES: k is total;

perhaps also: r is in standard form.

ENSURES: (match r cs k) returns true if

cs can be split as cs  p@s, with

p representing a string in L(r)

and k(s) evaluating to true;

(match r cs k) returns false, otherwise.

*)

Recall from last time:

Recall from last time:

(* accept : regexp -> string -> bool

REQUIRES: perhaps: r is in standard form.

ENSURES: (accept r s) returns true if s  L(r);

(accept r s) returns false, otherwise.

*)

Implementation
fun match (Char a) cs k =

(case cs of

[] => false

| c::cs' => (a=c) andalso (k cs'))

| match Zero _ _ = false

| match One cs k = k cs

| match (Plus(r1,r2)) cs k =

(match r1 cs k) orelse (match r2 cs k)

| match (Times(r1,r2)) cs k =

match r1 cs (fn cs' => match r2 cs' k)

| match (Star r) cs k =

k cs orelse

match r cs (fn cs' => match (Star r) cs' k)

fun accept r s = match r (String.explode s) List.null

Today, we will re-implement the regular

expression matcher using combinators.

Doing so will disentangle the regular

expression semantics from I/O (strings

and continuations) by providing some

staging.

Code

Outline

This happens before any character input or continuations are specified.

That is all.

Have a good weekend.

See you Tuesday, when we will start

working with Modules.

