15-150

Principles of Functional Programming

Slides for Lecture 16
Modules

March 18, 2025
Michael Erdmann

Lessons:
 ML's Module System:

— Signhatures and Structures
— Encapsulate common idioms
— Design large programs

Lessons:
 ML's Module System:

— Signatures and Structures
— Encapsulate common idioms
— Design large programs

Example: Int.toString Is a function
Inside a structure called Int.

If you look in the SML Basis Library
https://smlfamily.github.io/Basis/index.html,
you will see that structure Int "ascribes”

to a sighature called INTEGER.

https://smlfamily.github.io/Basis/index.html

Example: Int.toString Is a function
Inside a structure called Int.

If you look in the SML Basis Library

http://smi-family.org/Basis/,
you will see that structure Int “ascribes”

to a signature called INTEGER.

We will learn what those words mean.
(Basically: the signature says the function has
to exist and have type int -> string.)

http://sml-family.org/Basis/
http://sml-family.org/Basis/

Lessons:
 ML's Module System:

— Signhatures and Structures
— Encapsulate common idioms
— Design large programs

» Abstraction (specified via a signature)

— Abstract Data
— Information Hiding

* Implementation (within a structure)

— Abstraction Function (how does a specific
Implementation encode an abstraction)

— Representation Invariants (what constraints must an
Implementation respect)

Signatures & Structures

A signature specifies an interface.

A structure provides an implementation.

Signatures & Structures

A signature specifies an interface.

A structure provides an implementation.

Example:
A queue 1s a first-1n first-out
datastructure.

Signatures & Structures

A signature specifies an interface.

A structure provides an implementation.

Example:
A queue 1s a first-1n first-out
datastructure.

X1 , eeoe , xn
“dequeing” / “‘enqueing” x

removes apd adds x at the end here
returns this

element

Signatures & Structures

A signature specifies an interface.

A structure provides an implementation.

Example:
A queue 1s a first-1n first-out
datastructure.

We can describe a queue abstractly
by specifying a (new) queue type,
along with operations on that type.

That’s a signature.
Then we implement 1t 1n a structure.

Queue Signature

signature QUEUE =
sig

type 'a g (* abstract *)
val empty : 'a g

val enq : 'agqg * 'a -> 'a g

val null : 'a g —> bool

exception Empty

(* will raise Empty if called on empty q *)
val deq : 'aqgq -> 'a * 'a g

end

Representational Independence

The signature intentionally says nothing about how to
represent the abstract datatype "a q for queues.

The responsibility of any queue implementation is to
provide all the types and values specified in the signature,
but detalls are unspecified.

, _ _ o (We will see two different
That gives the implementation flexibility. queue implementations.)

A user of queues in turn only needs to see the signature,
not the detalls of any specific queue implementation.
Indeed, the user should not see or rely on those details, In
case the developer changes them.

First QUEUE implementation

Use a single list.

Need to say how the list
represents the abstract queue:

(called “abstraction function™)

The list represents the queue
elements in arrival order.

First QUEUE implementation

signature QUEUE =

8ig
type 'a q (* abstract *)
val empty : 'a q

val enq : 'ag * 'a -> 'aq

val null : 'a g -> bool

exception Empty

val deq : 'aqg -> 'a * 'aq
end

gstructure Queue : QUEUE =
struct

Pronounced ‘‘ascribes’ or ““ascribes to”
or “ascribes transparently”.

“ascribe’” means:
The structure provides all the items specified in the
signature. (The structure may contain additional items,
e.g., helper functions, but those will not be visible
outside the structure.)

“transparent” means:
The representation of the abstract queue type is visible
outside the structure, e.g., to a client.

First QUEUE implementation

signature QUEUE =

8ig
type 'a g (* abstract *)
val empty : 'a q

val enq : 'aq * 'a -> 'a g

val null : 'a g -> bool

exception Empty

val deq : 'aq -> 'a * 'aqg
end

gstructure Queue : QUEUE =
struct

type 'a g = 'a list
val empty = []
fun enqg (g, x) = g @ [x]

val null List.null

exception Empty

fun deq [] = raise Empty
| deq (x::q) = (x, Q)

end

Extra Code Is Hidden

We could put extra code constructs
(such as helper functions) into the
structure.

The code will be available within the structure.

Only what Is specified In the signature will
be accessible outside the structure.

Interacting with the Queue
val g2 = Queue.eng(Queue.eng(Queue.empty,1l),2)

Q: What 1s the type of g2 ?

(ignore that you know
itis int list)

Interacting with the Queue

val g2 = Queue.endg(Queue.enq(Queue.empty,1l),2)

Q: What 1s the type of g2 ?
A: int Queue.qg

Why? Because:

First, the signature specifies that
gueues have type 'a g, with 'a
representing the element type.
Thatis int here.

Second, we have implemented queues
using a structure called Queue.

The type is defined inside the structure,
so the type has the qualified name

'a Queue.q, herewith 'a
instantiated to int.

Interacting with the Queue

val g2 = Queue.eng(Queue.eng(Queue.empty,1l),2)
Q: What 1s the type of g2 ?
A: int Queue.qg
Also:

ML will print the list [1,2]. We can see the list because
of transparent ascription (more on how to hide that later).

Next, consider:

val (a, b)

Queue.deq g2
val (c,)

val (d,)

Queue.deq g2

Queue.deq b

Q: What are the bindings for a, ¢, d ?

Interacting with the Queue

val g2 = Queue.eng(Queue.eng(Queue.empty,1l),2)

Q: What 1s the type of g2 ?
A: int Queue.qg

Also:
ML will print the list [1,2]. We can see the list because
of transparent ascription (more on how to hide that later).

Next, consider:

val (a, b) = Queue.deqg g2
val (c,)

val (d,)

Queue.deq g2

Queue.deq b

Q: What are the bindings for a, ¢, d ?
A: [1/a, 1/c, 2/d]

(We also have the binding [[2] /b], but
that 1s only because of transparent ascription.
We will see how to hide queue internals.)

How long does enqueing take?
fun enq (q, x) = q @ [x]

O(n), with n the number of items In q.

We can improve that with a different representation of queues.

Second QUEUE implementation

Use a pair of lists:

(front, back).

Abstraction Function:

front @ (rev back)

represents the queue
elements in arrival order.

Second QUEUE implementation

signature QUEUE =

8ig
type 'a q (* abstract *)
val empty : 'a q

val eng : 'aqg * 'a -> 'aq

val null : 'a g -> bool

exception Empty

val deq : 'a g -> 'a * 'a g
end

structure Q :> QUEUE =
struct T

“opaque ascription”

This means the representation details are
hidden from any user external to the structure.
Only items specified by the signature are visible.

With transparent ascription, a user can see
and sometimes mess with a representation
(earlier, ML would print out lists for queues).

With opaque ascription, ML will only print a dash.
An external user cannot see or mess with the

internal representation.

Second QUEUE implementation

signature QUEUE =

8ig
type 'a q (* abstract *)
val empty : 'a g

val eng : 'aqg * 'a -> 'aq

val null : 'a g -> bool

exception Empty

val deq : 'aq -> 'a * 'a g
end

structure Q :> QUEUE =

struct
type 'a g = 'a list * 'a list
val empty = ([1,I[])
fun enqg ((£,b), x) = (£, x::b)
—

Satisfies requirementthat £ @ (rev(x::b))
constitute the queue elements in arrival order.

end

Second QUEUE implementation

signature QUEUE =

8ig
type 'a q (* abstract *)
val empty : 'a g

val enq : 'ag * 'a -> 'a g

val null : 'a g -> bool

exception Empty

val deq : 'aqg -> 'a * 'aq
end

structure Q :> QUEUE =
struct

type 'a g = 'a list * 'a list
val empty = (I[], [])
fun enqg ((£,b), x) = (£, x::b)

fun null ([]1,[]) = true
| null = false

exception Empty

fun deq ([],[]) = raise Empty
| deq ([1, b) = deq (rev b, [])
| deq (X::fl b) = (xl (fl b))

end

Interacting with Q implementation

val g2’ = Q.eng(Q.eng(Q.empty,1),2)

Question: What 1s the type of g2/ ?

Interacting with Q implementation

val g2’ = Q.eng(Q.eng(Q.empty,1),2)

Question: What 1s the type of g2/ ?
Answer: int Q.g

signature QUEUE =
8ig
type 'a g (* abstract *)
val empty : 'a q
val enq : 'aqg * 'a -> 'aq
val null : 'a g -> bool
exception Empty
val deq : 'aqg -> 'a * 'aqg
end

structure Q :> QUEUE =
struct
type 'a g = 'a list * 'a list

val empty = ([1,1[])

fun enqg ((£,b), x) = (£, x::b)
fun null ([],[]) = true
| null = false

exception Empty

fun deq ([1,[1) raise Empty
| deq ([1, b) = deq (rev b, [1)
| deq (x::£f, b) = (x, (£, b))

end

Interacting with Q implementation

val g2’ = Q.eng(Q.eng(Q.empty,1),2)

Question: What 1s the type of g2/ ?
Answer: int Q.qg

Also:
ML will now not print the internals, because of

opaque ascription. ML will merely print a dash:
val g2’ = - : int Q.qg .
Consider again the following, now using the Q implementation:
val (a, b) = Q.deqg g2’
val (¢,) = Q.deq g2’
val (d,) = Q.deq b

Question: What are the bindings for a, ¢, d ?

Interacting with Q implementation

val g2’ = Q.eng(Q.eng(Q.empty,1),2)

Question: What 1s the type of g2/ ?
Answer: int Q.qg

Also:
ML will now not print the internals, because of

opaque ascription. ML will merely print a dash:

val g2’ = - : int Q.q .

Consider again the following, now using the Q implementation:

val (a, b) = Q.deqg g2’
val (¢,) = Q.deq g2’
val (d,) = Q.deq b

Question: What are the bindings for a, ¢, d ?
Answer: Asbefore: [1/a, 1/c, 2/dl

(We also have a binding of a queue to b,
but the internals are now hidden.)

Now, how long goes enqueing take?
fun enqg ((£, b), x) = (£, x::b)

O(1) !

dequeuing can now take O(n) time.

However, enqueing and dequeing n items will only
take O(n) time total, so on average it is O(1).

One says the amortized cost is O(1).

The Two Implementations

structure Queue : QUEUE =
struct
type 'aq = 'a list

val empty = []
fun eng (g, x) = g @ [x]

val null List.null

exception Empty

fun deq [] = raise Empty
| deq (x::q) = (x, Q)
end

structure Q :> QUEUE =
struct
type 'a g = 'a list * 'a list

val empty = (I[], [1)

fun enqg ((£,b), x) = (£, x::b)
fun null ([],[]) = true
| null = false

exception Empty

fun deq ([],[]) = raise Empty
| deq ([]1, b) = deq (rev b, [1)
| deq (x::£, b) = (x, (f, b))
end

Compare gueue internals

operation Queue Q
empty [] ([1,11)
enqg 1 [1] ([1,I[1])

Compare gueue internals

operation Queue Q
empty [] ([1,I1)
enqg 1 [1] ([1,I[1])

deqg
A

(this returns 1 and the new queue)

Compare gueue internals

operation Queue Q
empty [] ([1,I1)
enqg 1 [1] ([1,I[1])

deq [2]
A

(this returns 1 and the new queue)

Compare gueue internals

operation Queue Q
empty [] ([1,I1)
enqg 1 [1] ([1,I[1])

briefly this:
deq 121 ([1,2]1,11)
A then this:

([21, [1)

(this returns 1 and the new queue)

Compare gueue internals

operation Queue Q
empty [] (L1,11)
eng 1 [1] ([1,I[1])
enqg 2 [1,2] ([1,[2,1])

briefly this:
deq 2] ([1,2]1,11)
then this:

([2],[1)

Note: With Qs opaque ascription,
internals are hidden from client.

Compare gueue internals

operation Queue Q
empty [] ([1,I1)
enqg 1 [1] ([1,I[1])

briefly this:
deq (2] ([1,2]1,1]1)

then this:

([21, [1)

enqg 4 [2,3,4] ([2],[4,3])

Dictionary Signature

A dictionary 1s a collection of pairs
of the form (key, wvalue).

We require all the keys to be
unique 1n a given dictionary.

signature DICT =
sig

end

Dictionary Signature

A dictionary 1s a collection of pairs
of the form (key, wvalue).

We require all the keys to be
unique 1n a given dictionary.

signature DICT = (forthe time being, we'll fix the key type)
sig —
type key = string (* concrete *)

end

Dictionary Signature

A dictionary 1s a collection of pairs
of the form (key, wvalue).

We require all the keys to be
unique 1n a given dictionary.

signature DICT = (forthe time being, we'll fix the key type)
sig —
type key = string (* concrete *)

type 'a entry = key * 'a (* concrete *)

|

we'll allow the value type to be polymorphic

end

Dictionary Signature

A dictionary 1s a collection of pairs
of the form (key, wvalue).

We require all the keys to be
unique 1n a given dictionary.

signature DICT
sig
type key = string (* concrete *)
type 'a entry = key * 'a (* concrete *)
type 'a dict (* abstract *)
val empty : 'a dict

val lookup : 'a dict -> key -> 'a option

val insert : 'a dict * 'a entry -> 'a dict

end \\\

(replace entry if key already appears in the dictionary)

Dictionary Implementation

We will use a tree implementation.

Abstraction Function: The
(key,value) items in the tree
constitute the dictionary.

We further impose a
Representation Invariant:

The tree must be sorted on key
(and all keys must be unique).

This means:

All functions within the structure may assume
that any trees they receive are sorted

and
must ensure that any trees returned are sorted.

Dictionary Implementation

We will use a tree implementation.

Abstraction Function: The
(key,value) items in the tree
constitute the dictionary.

We further impose a
Representation Invariant:

The tree must be sorted on key
(and all keys must be unique).

This means:

All functions within the structure may assume
that any trees they receive are sorted

and

must ensure that any trees returned are sorted.
(Similarly for key uniqueness.)

BST Implementation of Dictionaries

signature DICT =

sig
type key = string (* concrete *)
type 'a entry = key * 'a (* concrete ¥*)

type 'a dict (* abstract ¥)
val empty : 'a dict
val lookup : 'a dict -> key -> 'a option

val insert : 'a dict * 'a entry -> 'a dict
end

structure BST : DICT =
struct

type key = string

type 'a entry = key * 'a

datatype 'a tree
Empty
| Node of 'a tree * 'a entry * 'a tree

Observe: Because the datatype is not declared in the
signature, a user external to the structure cannot
pattern match on or otherwise use the constructors.

They will be visible because we will declare
type 'a dict ='a tree
and because we are using transparent ascription.

So, a user can see the internals of our representation,
but cannot mess with them.

BST Implementation of Dictionaries

signature DICT =

sig
type key = string (* concrete *¥*)
type 'a entry = key * 'a (* concrete ¥*)

type 'a dict (* abstract *¥)
val empty : 'a dict
val lookup : 'a dict -> key -> 'a option

val insert : 'a dict * 'a entry -> 'a dict
end

structure BST : DICT =
struct

type key = string

type 'a entry = key * 'a

datatype 'a tree
Empty
| Node of 'a tree * 'a entry * 'a tree

type 'a dict = 'a tree
val empty = Empty
fun lookup

fun insert
end

BST Implementation of Dictionaries

(* insert : 'a dict * 'a entry -> 'a dict *)

BST Implementation of Dictionaries

(* insert : 'a dict * 'a entry -> 'a dict *)

fun insert (Empty, e) = Node (Empty, e, Empty)
| insert (Node(lt, e’ as (k’,), rt),...) =

Layered Pattern Matching

Here, this creates bindings

of the full (key,value) entrytoe’,
of just the key part to k’, and

the wildcard matches the value part,
without producing a binding.

BST Implementation of Dictionaries

(* insert : 'a dict * 'a entry -> 'a dict *)

fun insert (Empty, e) = Node (Empty, e, Empty)
| insert (Node(lt, e’ as (k’,), rt),
e as (k,)) =
(case String.compare(k,k’) of
EQUAL => Node(lt, e, rt)

/ |

“replace” exisiting entry with new entry on same key

BST Implementation of Dictionaries

(* insert : 'a dict * 'a entry -> 'a dict *)

fun insert (Empty, e) = Node (Empty, e, Empty)

| insert (Node(lt, e’ as (k’,), rt),
e as (k,)) =
(case String.compare(k,k’) of
EQUAL => Node(lt, e, rt)
|LESS => Node (insert(lt,e), e’, rt)
| GREATER => Node (1t, e’, insert(rt,e)))

BST Implementation of Dictionaries

(* lookup : 'a dict -> key -> 'a option *)

fun lookup tree key =
let
fun 1k (Empty) = NONE
| 1k (Node(left, (k,v), right)) =
(case String.compare (key,k) of
EQUAL => SOME (V)
| LESS => 1k left
| GREATER => 1k right)
in
lk tree
end

Interacting with BST

val d = BST.insert (
BST.insert (
BST.insert (
BST.insert (BST.empty, ("a",1)),
("b",2)),
("c",3)),
(||d||’4))

Question: What 1s the type of d ?

Interacting with BST

val d = BST.insert (
BST.insert (
BST.insert (
BST.insert (BST.empty, ("a",1)),
("b",2)),
("c",3)),
(lldll’4))

Question: What 1s the type of d ?
Answer: int BST.dict

signature DICT =

sig
type key = string (* concrete *)
type 'a entry = key * 'a (* concrete ¥*)

type 'a dict (* abstract *)
val empty : 'a dict
val lookup : 'a dict -> key -> 'a option

val insert : 'a dict * 'a entry -> 'a dict
end

structure BST : DICT =
struct

end

Interacting with BST

val d = BST.insert (
BST.insert (
BST.insert (
BST.insert (BST.empty, ("a",1)),
("b",2)),
("c",3)),
(||d||’4))

Question: What 1s the type of d ?
Answer: int BST.dict

ML will print the internal tree representation of d.

We could have hidden that by using opaque ascription:
structure BST :> DICT =

(Reminder: Despite seeing the internals a client cannot

pattern match on the constructors since they are not

declared in the signature.)

Interacting with BST

val d = BST.insert (
BST.insert (
BST.insert (
BST.insert (BST.empty, ("a",1)),
("b",2)),
("c",3)),
(||d||’4))

Question: What 1s the type of d ?
Answer: int BST.dict

ML will print the internal tree representation of d.

We could have hidden that by using opaque ascription:
structure BST :> DICT =

(Reminder: Despite seeing the internals a client cannot

pattern match on the constructors since they are not

declared in the signature.)

Now consider: val look

BST.lookup d

Question: What is the type of look ?

Interacting with BST

val d = BST.insert (
BST.insert (
BST.insert (
BST.insert (BST.empty, ("a",1)),
("b",2)),
("c",3)),
(||d||’4))

Question: What 1s the type of d ?
Answer: int BST.dict

ML will print the internal tree representation of d.

We could have hidden that by using opaque ascription:
structure BST :> DICT =

(Reminder: Despite seeing the internals a client cannot

pattern match on the constructors since they are not

declared in the signature.)

Now consider: val look = BST.lookup d

Question: What is the type of look ?

Answer: BST.key -> int option

(same as string -> int option)

Interacting with BST

val d = BST.insert (
BST.insert (
BST.insert (
BST.insert (BST.empty, ("a",1)),
("b",2)),
("c",3)),
(||d||’4))

Question: What 1s the type of d ?
Answer: int BST.dict

ML will print the internal tree representation of d.

We could have hidden that by using opaque ascription:
structure BST :> DICT =

(Reminder: Despite seeing the internals a client cannot

pattern match on the constructors since they are not

declared in the signature.)

Now consider: val look = BST.lookup d
val x = look "e™"
val y = look "a"

Question: What are the bindings for x and y ?

Interacting with BST

val d = BST.insert (
BST.insert (
BST.insert (
BST.insert (BST.empty, ("a",1)),
("b",2)),
("c",3)),
(||d||’4))

Question: What 1s the type of d ?
Answer: int BST.dict

ML will print the internal tree representation of d.

We could have hidden that by using opaque ascription:
structure BST :> DICT =

(Reminder: Despite seeing the internals a client cannot

pattern match on the constructors since they are not

declared in the signature.)

Now consider: val look = BST.lookup d
val x = look "e"
val y = look "a"

Question: What are the bindings for x and y ?
Answer: [NONE/x, (SOME 1) /vl

Two Comments

Here are two other ways to define the dictionary type within BST,
producing an "a dict equivalent to what we wrote before:

datatype "a tree = Empty | Node of "a tree * "a * "a tree

type "a dict = "a entry tree

datatype "a dict =
Empty | Node of "a dict * "a entry * "a dict

IF signature DICT had mentioned the constructors Empty and
Node, then a client of BST could/would refer to them as
BST.Empty and BST.Node (for instance in pattern-matching).

However, signature DICT does not mention these constructors,
so a client of BST cannot refer to the constructors.

(Only inside the structure BST are the constructors accessible,
and there directly as Empty and Node.)

That is all for today.

See you Thursday.

(We will discuss functors.)

	15-150Principles of Functional Programming
	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

	RepInd.pdf
	Representational Independence
	Representational Independence

	Comments.pdf
	Two Comments
	Two Comments

	Title.pdf
	15-150Principles of Functional Programming

	Title.pdf
	15-150Principles of Functional Programming

