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Lessons:
• Parameterized Structures
• Type Classes

Simile:

A functor
expects a structure as argument

and produces a structure.

abstraction
implementation

mapping

type
value

function

signature
structure

functor



Before we get to functors, 
we need to explore some motivations.



signature DICT =
sig
type key = string                 (* concrete type *)
type 'a entry = key * 'a          (* concrete type *)

type 'a dict                      (* abstract type *)

val empty : 'a dict
val lookup : 'a dict -> key -> 'a option
val insert : 'a dict * 'a entry -> 'a dict

end



Comment about implementing abstract types
The dictionary signature DICT specifies the abstract type

type 'a dict   (* abstract *)

A developer implementing such a structure can do so in
a variety of ways, including using “datatype” declarations:

Writing “type” in the signature merely means one has to
provide some type 'a dict, when creating a structure 
that ascribes to DICT.

datatype 'a dict = Empty | Node of 'a dict * 'a entry * 'a dict

datatype 'a tree = Empty | Node of 'a tree * 'a entry * 'a tree
type 'a dict = 'a tree

type 'a dict = 'a entry list

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree
type 'a dict = 'a entry tree



Representational Independence

• Client does not need to know and should 
not rely on how an abstract type is 
implemented.

• There could be different implementations 
(e.g., our two QUEUE implementations).

• All behavior relevant to the client should 
be specified via a signature.



signature DICT =
sig
type key = string                 (* concrete type *)
type 'a entry = key * 'a          (* concrete type *)

type 'a dict                      (* abstract type *)

val empty : 'a dict
val lookup : 'a dict -> key -> 'a option
val insert : 'a dict * 'a entry -> 'a dict

end

We had made the dictionary abstract, we allowed the entries
to be arbitrary, but we fixed the keys to be strings.

What if we wanted the keys to be integers … or something else?



signature DICT =
sig
type 'a key = 'a                    (* concrete type *)
type ('a, 'b) entry = 'a key * 'b   (* concrete type *)

type ('a, 'b) dict                  (* abstract type *)

val empty : ('a, 'b) dict

val lookup : 
val insert :

end

We could try to make the dictionaries doubly polymorphic:



signature DICT =
sig
type 'a key = 'a                    (* concrete type *)
type ('a, 'b) entry = 'a key * 'b   (* concrete type *)

type ('a, 'b) dict                  (* abstract type *)

val empty : ('a, 'b) dict

val lookup : 
val insert :

end

We could try to make the dictionaries doubly polymorphic:



signature DICT =
sig
type 'a key = 'a                    (* concrete type *)
type ('a, 'b) entry = 'a key * 'b   (* concrete type *)

type ('a, 'b) dict                  (* abstract type *)

val empty : ('a, 'b) dict

val lookup : 
val insert :

end

We could try to make the dictionaries doubly polymorphic:



We realize that we need to be able to compare
values of our key type.

At the very least the key type needs some
kind of equality comparison.

Ideally it should have some kind of order
comparison so we can implement dictionaries
using binary search trees.

How do we model that?



lookup : ('a * 'a -> order) -> ('a, 'b) dict -> 'a -> 'b option

insert : ('a * 'a -> order) -> (('a, 'b) dict * ('a, 'b) entry)
-> ('a, 'b) dict

One possibility is to make the comparison function an
argument to insert and lookup, so:



Then we could implement BST much as before:

structure BST : DICT =
struct
type 'a key = 'a
type ('a, 'b) entry = 'a key * 'b

datatype ('a, 'b) dict = Empty 
| Node of ('a, 'b) dict * ('a, 'b) entry * ('a, 'b) dict

val empty = Empty

fun lookup cmp d k =

fun insert cmp (d, e) =

end  (* structure BST *)



Then we could implement BST much as before:

structure BST : DICT =
struct
type 'a key = 'a
type ('a, 'b) entry = 'a key * 'b

datatype ('a, 'b) dict = Empty 
| Node of ('a, 'b) dict * ('a, 'b) entry * ('a, 'b) dict

val empty = Empty

fun lookup cmp d k =

fun insert cmp (d, e) =

end  (* structure BST *)

Remember:  These two types were specified
concretely in the signature,

so we need to implement them as specified. 



Then we could implement BST much as before:

structure BST : DICT =
struct
type 'a key = 'a
type ('a, 'b) entry = 'a key * 'b

datatype ('a, 'b) dict = Empty 
| Node of ('a, 'b) dict * ('a, 'b) entry * ('a, 'b) dict

val empty = Empty

fun lookup cmp d k =

fun insert cmp (d, e) =

end  (* structure BST *)

The abstract dictionary type is again
a tree, but now doubly polymorphic.

(And we wrote it without a separate
hidden helper type, but that’s not significant.)



Then we could implement BST much as before:

structure BST : DICT =
struct
type 'a key = 'a
type ('a, 'b) entry = 'a key * 'b

datatype ('a, 'b) dict = Empty 
| Node of ('a, 'b) dict * ('a, 'b) entry * ('a, 'b) dict

val empty = Empty

fun lookup cmp d k =

fun insert cmp (d, e) =

end  (* structure BST *)

Implement the empty dictionary as
an Empty tree, as before.



Then we could implement BST much as before:

structure BST : DICT =
struct
type 'a key = 'a
type ('a, 'b) entry = 'a key * 'b

datatype ('a, 'b) dict = Empty 
| Node of ('a, 'b) dict * ('a, 'b) entry * ('a, 'b) dict

val empty = Empty

fun lookup cmp d k =

fun insert cmp (d, e) =

end  (* structure BST *)

The bodies of lookup and insert
are much as before, but they

now use cmp in place of
String.compare.



Does this do the trick?

Yes and No.

If we are careful to use the same comparison
function cmp in insert as in lookup, and do that
consistently for all operations with a given dictionary,
then everything is fine.



However, it is easy to make a mistake.
(A malicious user might do so intentionally.)

For example, perhaps we have created the following tree using Int.compare:

If we now binary search for 1, using cmp below, we won’t find it:

fun cmp (x,y) = Int.compare (y,x)



Let’s take advantage of the type system
to ensure that
all operations

on a given dictionary 
use the same comparison function.



A type class is a type
along with some collection of operations

for that type (not necessarily all operations).
Example: signature ORDERED =

sig
type t  (* parameter *)
val compare : t * t -> order

end

Signature ORDERED specifies an “ordered type class” to consist
of a type t along with a comparison function compare for t.



A type class is a type
along with some collection of operations

for that type (not necessarily all operations).
Example: signature ORDERED =

sig
type t  (* parameter *)
val compare : t * t -> order

end

Signature ORDERED specifies an “ordered type class” to consist
of a type t along with a comparison function compare for t.

Comment:   The signature does not specify t concretely, but t need not be abstract.
In a given setting, type t will be some already existing type, so t is a “parameter”.
The signature is said to be “descriptive” of what we mean by an “ordered type class”.
This is in contrast to our signature for dictionaries, which was “prescriptive”, defining
a brand new abstract type along with operations for it.



Perspective on types of Types

• concrete : client and implementation both 
know what the type is.

• abstract : client does not (and should not) 
know how the type is implemented – the 
client’s code must work regardless of the 
implementation.

• parameter : client supplies the type –
implementation must work with whatever 
the client supplies.



Three structures implementing different ORDEREDs:



Three structures implementing different ORDEREDs:
structure IntLt : ORDERED =
struct

type t = int
val compare = Int.compare

end

structure IntGt : ORDERED =
struct

type t = int
fun compare(x,y) = Int.compare(y,x)

end

structure StringLt : ORDERED =
struct

type t = string
val compare = String.compare

end



Three structures implementing different ORDEREDs:
structure IntLt : ORDERED =
struct

type t = int
val compare = Int.compare

end

structure IntGt : ORDERED =
struct

type t = int
fun compare(x,y) = Int.compare(y,x)

end

structure StringLt : ORDERED =
struct

type t = string
val compare = String.compare

end

Specify whatever the comparison function we want.

Specify whatever type we care about.



Three structures implementing different ORDEREDs:
structure IntLt : ORDERED =
struct

type t = int
val compare = Int.compare

end

structure IntGt : ORDERED =
struct

type t = int
fun compare(x,y) = Int.compare(y,x)

end

structure StringLt : ORDERED =
struct

type t = string
val compare = String.compare

end

We may want different comparison functions for
a given type.  Package each up in its own structure.



Three structures implementing different ORDEREDs:
structure IntLt : ORDERED =
struct

type t = int
val compare = Int.compare

end

structure IntGt : ORDERED =
struct

type t = int
fun compare(x,y) = Int.compare(y,x)

end

structure StringLt : ORDERED =
struct

type t = string
val compare = String.compare

end



Three structures implementing different ORDEREDs:

structure IntLt : ORDERED =
struct
type t = int
val compare = Int.compare

end

structure IntGt : ORDERED =
struct
type t = int
fun compare(x,y) = Int.compare(y,x)

end

structure StringLt : ORDERED =
struct
type t = string
val compare = String.compare

end

signature ORDERED =
sig
type t  (* parameter *)
val compare : t * t -> order

end

(again, now with the signature shown on the left)



Let us now redefine the dictionary signature:

signature DICT =
sig
structure Key : ORDERED    (* parameter *)

type 'a entry = Key.t * 'a  (* concrete *)

type 'a dict                (* abstract *)

val empty : 'a dict
val lookup : 'a dict -> Key.t -> 'a option
val insert : 'a dict * 'a entry -> 'a dict

end



Let us now redefine the dictionary signature:

signature DICT =
sig
structure Key : ORDERED    (* parameter *)

type 'a entry = Key.t * 'a  (* concrete *)

type 'a dict                (* abstract *)

val empty : 'a dict
val lookup : 'a dict -> Key.t -> 'a option
val insert : 'a dict * 'a entry -> 'a dict

end

Instead of a polymorphic key we have an “ordered” key.



We now implement dictionaries with different keys:
structure IntLtDict : DICT =
struct

structure Key = IntLt
(* rest of code much as in original BST but now using

Key.t and Key.compare instead of key and String.compare. *)
end

structure IntGtDict : DICT =
struct

structure Key = IntGt
(* ... uses Key.t & Key.compare instead of key & String.compare ... *)

end

structure StringLtDict : DICT =
struct

structure Key = StringLt
(* ... uses Key.t & Key.compare instead of key & String.compare ... *)

end



We now implement dictionaries with different keys:
structure IntLtDict : DICT =
struct

structure Key = IntLt
(* rest of code much as in original BST but now using

Key.t and Key.compare instead of key and String.compare. *)
end

structure IntGtDict : DICT =
struct

structure Key = IntGt
(* ... uses Key.t & Key.compare instead of key & String.compare ... *)

end

structure StringLtDict : DICT =
struct

structure Key = StringLt
(* ... uses Key.t & Key.compare instead of key & String.compare ... *)

end

only difference is the Key



A couple points to consider:

(1) Have we solved the problem of 
inserting with one comparison function but 
looking up elements with a different one?

(2) Can we avoid rewriting the same code
over and over when implementing

dictionaries that use different Keys?



(1) Have we solved the problem of 
inserting with one comparison function but 
looking up elements with a different one?

For instance, could we accidentally
insert into a dictionary using

IntLtDict.insert but then lookup using 
IntGtDict.lookup ?

After all,  IntLtDict.Key.t and IntGtDict.Key.t
are both int.



(1) Have we solved the problem of 
inserting with one comparison function but 
looking up elements with a different one?

Yes!
The types IntLtDict.dict

and IntGtDict.dict are different.
Each  datatype 'a dict = ... declaration

creates a brand new type (Dataype Generativity).
(Printed representation is the same, but types are not.)

Typechecker will prevent intermingling of dictionaries.



(1) Have we solved the problem of 

inserting with one comparison function but 

looking up elements with a different one?

Yes!

The types IntLtDict.dict

and IntGtDict.dict are different.

Each  datatype 'a dict = ... declaration

creates a brand new type (Dataype Generativity).

(Printed representation is the same, but types are not.)

Typechecker will prevent intermingling of dictionaries.

CAUTION:  Answer would be NO

if we had used association lists.



(1) Have we solved the problem of 

inserting with one comparison function but 

looking up elements with a different one?

Yes!

The types IntLtDict.dict

and IntGtDict.dict are different.

Each  datatype 'a dict = ... declaration

creates a brand new type (Dataype Generativity).

(Printed representation is the same, but types are not.)

Typechecker will prevent intermingling of dictionaries.

Answer is also YES

if we use opaque ascription.



(2) Can we avoid rewriting the same code
over and over when implementing

dictionaries that use different Keys?

Yes!
That’s where functors come into the picture.

A functor expects a structure and creates a structure.

Let’s write a functor that expects a structure ascribing
to ORDERED and creates a structure ascribing to DICT.



functor TreeDict (K : ORDERED) : DICT =
struct

structure Key = K
type 'a entry = Key.t * 'a

datatype 'a dict =  ... 

(* code as before -- using
Key.t and Key.compare *)

end



functor TreeDict (K : ORDERED) : DICT =
struct

structure Key = K
type 'a entry = Key.t * 'a

datatype 'a dict =  ... 

(* code as before -- using
Key.t and Key.compare *)

end



functor TreeDict (K : ORDERED) : DICT =
struct

structure Key = K
type 'a entry = Key.t * 'a

datatype 'a dict =  ... 

(* code as before -- using
Key.t and Key.compare *)

end

structure IntLtDict = TreeDict(IntLt)
structure IntGtDict = TreeDict(IntGt)
structure StringLtDict = TreeDict(StringLt)

And now can define our earlier dictionaries as:



If we want to hide the tree implementation of
dictionaries, we could use opaque ascription:

functor TreeDict (K : ORDERED) 
:> DICT where type Key.t = K.t

= struct ... end

functor TreeDict (K : ORDERED) :> DICT 
= struct ... end

However, that also hides the key type in DICT.
We need that to be known to be the same as the 
input key type.  We therefore use a where type
clause to expose the key type in DICT:



signature DICT =

sig

structure Key : ORDERED    (* parameter *)

type 'a entry = Key.t * 'a  (* concrete *)

type 'a dict (* abstract *)

val empty : 'a dict

val lookup : 'a dict -> Key.t -> 'a option

val insert : 'a dict * 'a entry -> 'a dict

end

signature ORDERED =

sig

type t  (* parameter *)

val compare : t * t -> order

end

Recall:



Some Syntax Comments

• where type clauses expose types in a 

signature.   So we could also have defined 

the following (for instance):

• Multiple where type clauses are 

permitted in SML/NJ.

structure T = TreeDict(IntLt) :> 

DICT where type Key.t = int



Syntactic Sugar
One can pass multiple structures or even
value declarations to a functor using a more verbose format.
SML will wrap an implicit signature around these arguments.
For instance, the following verbose format:

functor PairOrder (structure Ox : ORDERED
structure Oy : ORDERED) : ORDERED 

= ... (* code that refers to Ox and Oy *)

functor PairOrder (P : sig
structure Ox : ORDERED
structure Oy : ORDERED

end)
: ORDERED

= ... (* code that refers to P.Ox and P.Oy *)

no comma !

desugars as (not quite this, but enough for our purposes): 



Example: 2D Lexicographic Order

functor PairOrder (structure Ox : ORDERED
structure Oy : ORDERED) : ORDERED 

=
struct

type t = Ox.t * Oy.t
fun compare ((x1,y1), (x2,y2)) =

(case Ox.compare (x1,x2)
of EQUAL => Oy.compare (y1,y2)
| otherwise => otherwise)

end



Example: 2D Lexicographic Order

functor PairOrder (structure Ox : ORDERED
structure Oy : ORDERED) : ORDERED 

=
struct

type t = Ox.t * Oy.t
fun compare ((x1,y1), (x2,y2)) =

(case Ox.compare (x1,x2)
of EQUAL => Oy.compare (y1,y2)
| otherwise => otherwise)

end



Example: 2D Lexicographic Order

functor PairOrder (structure Ox : ORDERED
structure Oy : ORDERED) : ORDERED 

=
struct

type t = Ox.t * Oy.t
fun compare ((x1,y1), (x2,y2)) =

(case Ox.compare (x1,x2)
of EQUAL => Oy.compare (y1,y2)
| otherwise => otherwise)

end



structure GridOrder =
PairOrder (structure Ox = StringLt

structure Oy = IntLt)

Now let’s put the pieces together to create a 2D grid,
with integers indexing one coordinate and strings the other:



With the syntactic sugar we have: 

functor PairOrder (structure Ox : ORDERED
structure Oy : ORDERED) : ORDERED =

... (* code that refers to Ox and Oy *)

structure GridOrder = PairOrder (structure Ox = StringLt
structure Oy = IntLt)



Without sugaring, we might write something like this:
signature PairSig =
sig

structure Ox : ORDERED
structure Oy : ORDERED

end

functor PairOrder (P : PairSig) : ORDERED =
... (* code that refers to P.Ox and P.Oy *)

structure Grid : PairSig = 
struct

structure Ox = StringLt
structure Oy = IntLt

end

structure GridOrder = PairOrder (Grid)

With the syntactic sugar we have: 

functor PairOrder (structure Ox : ORDERED
structure Oy : ORDERED) : ORDERED =

... (* code that refers to Ox and Oy *)

structure GridOrder = PairOrder (structure Ox = StringLt
structure Oy = IntLt)



Without sugaring, we might write something like this:
signature PairSig =
sig

structure Ox : ORDERED
structure Oy : ORDERED

end

functor PairOrder (P : PairSig) : ORDERED =
... (* code that refers to P.Ox and P.Oy *)

structure Grid : PairSig = 
struct

structure Ox = StringLt
structure Oy = IntLt

end

structure GridOrder = PairOrder (Grid)

With the syntactic sugar we have: 

functor PairOrder (structure Ox : ORDERED
structure Oy : ORDERED) : ORDERED =

... (* code that refers to Ox and Oy *)

structure GridOrder = PairOrder (structure Ox = StringLt
structure Oy = IntLt)



Without sugaring, we might write something like this:
signature PairSig =
sig

structure Ox : ORDERED
structure Oy : ORDERED

end

functor PairOrder (P : PairSig) : ORDERED =
... (* code that refers to P.Ox and P.Oy *)

structure Grid : PairSig = 
struct

structure Ox = StringLt
structure Oy = IntLt

end

structure GridOrder = PairOrder (Grid)

With the syntactic sugar we have: 

functor PairOrder (structure Ox : ORDERED
structure Oy : ORDERED) : ORDERED =

... (* code that refers to Ox and Oy *)

structure GridOrder = PairOrder (structure Ox = StringLt
structure Oy = IntLt)

For a given functor, need to be consistent.
Define functor AND call it using sugar.
Or define functor AND call it without sugar.
Cannot mix the syntax for a given functor.



structure GridOrder =
PairOrder (structure Ox = StringLt

structure Oy = IntLt)

Create a board value with something on it:

Create a board structure indexed by the grid coordinates:
structure Board = TreeDict(GridOrder)

val b = Board.insert (Board.empty, 
(("A", 1), fn x => x + 1))

Now let’s put the pieces together to create a 2D grid,
with integers indexing one coordinate and strings the other:



structure GridOrder =
PairOrder (structure Ox = StringLt

structure Oy = IntLt)

Create a board value with something on it:

Create a board structure indexed by the grid coordinates:
structure Board = TreeDict(GridOrder)

val b = Board.insert (Board.empty, 
(("A", 1), fn x => x + 1))

Question: What is the type of  b ?

Now let’s put the pieces together to create a 2D grid,
with integers indexing one coordinate and strings the other:



structure GridOrder =
PairOrder (structure Ox = StringLt

structure Oy = IntLt)

Create a board value with something on it:

Create a board structure indexed by the grid coordinates:
structure Board = TreeDict(GridOrder)

val b = Board.insert (Board.empty, 
(("A", 1), fn x => x + 1))

Question: What is the type of  b ?
Answer: (int -> int) Board.dict .

Now let’s put the pieces together to create a 2D grid,
with integers indexing one coordinate and strings the other:



That is all.

See you Tuesday, when we will discuss an 
approach for maintaining hard-to-satisfy 

representation invariants in the context of 
Red Black Trees.

Please have a good weekend.


