
15-150

Principles of Functional Programming

Slides for Lecture 19

Parallelism, Cost Graphs, Sequences

April 1, 2025

Michael Erdmann

Lessons:

• Cost Semantics / Cost Graphs

• Brent’s Theorem

• Sequences

Parallelism:

Performing multiple computations simultaneously.

Scheduling:
Telling each processor what to do when.

• We allow independent expressions in a

program to evaluate in parallel.

• We require parallel evaluation to have

well-defined behavior.

• We do not worry explicitly about

scheduling, but we use cost semantics to

write code that facilitates parallelism.

This course focuses on deterministic parallelism:

(Functional programming languages without

side-effects facilitate this approach.)

• Write code that does not bake in a schedule.

(Lists bake in sequential evaluation. Trees

facilitate parallelism. Today we will introduce

an abstract datatype called sequences.

Sequences have a linear structure like lists

but support the parallelism of trees.)

• Reason about time complexity (Work &

Span) to write fast parallel code. (You have

been doing that with recurrences. Today we

will introduce cost graphs as another tool.)

What can a programmer do to facilitate parallelism?

Cost Graphs

Cost graphs are a form of series-parallel graph.

Such a graph is a directed acyclic graph,

with designated source and sink nodes.

(Source means there are no incoming edges.

Sink means there are no outgoing edges.)

We draw graphs with source at top and sink at bottom.

All edges directed downward.)

We will use cost graphs to model computations

and to compute Work and Span.

Basic Constructions

Base Case:
(single node, source=sink,

modeling no computation)

Basic Constructions

Base Case:
(single node, source=sink,

modeling no computation)

Sequential

Composition:

(Edge from G1’s sink to G2’s source,

modeling sequential computation:
perform G1’s computation, then G2’s.)

Basic Constructions

Base Case:
(single node, source=sink,

modeling no computation)

Sequential

Composition:
(Edge from G1’s sink to G2’s source,

modeling sequential computation)

Special case: (one evaluation step)

Basic Constructions

Base Case:
(single node, source=sink,

modeling no computation)

Sequential

Composition:
(Edge from G1’s sink to G2’s source,

modeling sequential computation)

Parallel

Composition:

Special case: (one evaluation step)

(Fork and Join: new source with edges
to original sources of G1 and G2, then

edges from their sinks to a new sink.

Models parallel computation.)

Basic Constructions

Base Case:
(single node, source=sink,

modeling no computation)

Sequential

Composition:
(Edge from G1’s sink to G2’s source,

modeling sequential computation)

Parallel

Composition:

Special case: (one evaluation step)

(Fork and Join: new source with edges
to original sources of G1 and G2, then

edges from their sinks to a new sink.

Models parallel computation.) (n-ary parallelism allowed)

Has cost graph:

(Edges are implicitly directed downward.)

(1+2)
(1+2)3

We are being a little sloppy but it is fine.

We elide that to:

Work and Span

• We define the work of a cost graph G to be

the number of nodes in G.

• We define the span of a cost graph G to be

the number of nodes on the longest path

from G’s source to G’s sink.

• We now re-define the work and span of an

expression e to be the work and span of the

cost graph G representing e.

(These numbers differ by constant factors/terms from our

earlier definitions, but will be the same asymptotically.)

Work = 7 Span = 5

Brent’s Theorem

An expression e with work W and span S

can be evaluated on a p-processor

machine in time (max(W /p, S)).

like “big-O” but now a lower bound

(we pretend it is an approximate equality)

Scheduling

(There are various kinds of pebbling strategies.)

Breadth-First Pebbling Algorithm

This might be a cost graph for

Breadth-First Pebbling Algorithm

We wish to assign processors

to nodes at successive time steps.

[At each time step, the

processor assigned to a node

will perform the computation

represented by the node and

its incident edges

(e.g., fork, join, arithmetic).]

Breadth-First Pebbling Algorithm

Assume we have 2 processors.

processors

1 2

ti
m

e

1

2

3

4

5

6

Breadth-First Pebbling Algorithm

processors

1 2

ti
m

e

1

2

3

4

5

6

a

first pebble on node “a”

(idle)

Breadth-First Pebbling Algorithm

processors

1 2

ti
m

e

1

2

3

4

5

6

a

b g

visited

Breadth-First Pebbling Algorithm

processors

1 2

ti
m

e

1

2

3

4

5

6

a

b g

visited

visited visited

c d

Breadth-First Pebbling Algorithm

processors

1 2

ti
m

e

1

2

3

4

5

6

a

b g

visited

visited visited

c d

visited visited

h i

Breadth-First Pebbling Algorithm

processors

1 2

ti
m

e

1

2

3

4

5

6

a

b g

visited

visited visited

c d

visited visited

h i

e j

visited visited

Breadth-First Pebbling Algorithm

processors

1 2

ti
m

e

1

2

3

4

5

6

a

b g

visited

visited visited

c d

visited visited

h i

e j

visited visited

visited visited

f

processors

1 2

ti
m

e

1

2

3

4

5

6

a

b g

c d

h i

e j

f

visited

visited visited

visited visited visited visited

visited visited

visited

Sequences
• We will present (part of the) SEQUENCE signature.

• We will describe the work and span of some

sequence functions via cost graphs.

• Sequences are abstract. Hidden implementation.

• For reasoning purposes, we write a sequence of
length n containing elements x0, …, xn-1 as

<x0, …, xn-1> .

• Two sequence values are extensionally

equivalent iff they have the same length and

contain extensionally equivalent values at

corresponding positions.

signature SEQUENCE =

sig

type 'a seq (* abstract *)

exception Range of string

val empty : unit -> 'a seq

val tabulate : (int -> 'a) -> int -> 'a seq

val length : 'a seq -> int

val nth : 'a seq -> int -> 'a

val map : ('a -> 'b) -> 'a seq -> 'b seq

val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

val mapreduce :

('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b

val filter : ('a -> bool) -> 'a seq -> 'a seq

...

end

Most of those functions should seem familiar

from lists.

One difference is that instead of foldr and

foldl we now have reduce. We will talk

more about that.

You probably never used List.tabulate.

We will discuss tabulate for sequences.

Unlike lists, sequences support parellization,

giving good span costs for many functions.

sequence type

<x0, …, xn-1> : t seq

if xi : t ,

for i = 0, ..., n-1.

sequence type

<x0, …, xn-1> : t seq

Reminder: A client would

write something like

t Seq.seq

given structure Seq ascribing

to signature SEQUENCE.

empty

empty ()

returns a sequence of length 0,

containing no elements.

The type can be t seq, for any type t.

Cost Graph: So O(1) work and span.

tabulate

tabulate f n ≅ <f(0), …, f(n-1)>

Cost Graph:
G1G0 Gn-1

...

Here Gi is the cost graph for evaluating f(i).

If f(i) has O(1) work and span for all i, then

tabulate f n has O(n) work and O(1) span.

tabulate

tabulate f n ≅ <f(0), …, f(n-1)>

Cost Graph:
G1G0 Gn-1

...

Here Gi is the cost graph for evaluating f(i).

IF f(i) has O(1) work and span for all i, then

tabulate f n has O(n) work and O(1) span.

nth

nth <x0, …, xn-1> i ≅ xi , if 0 ≤ i < n,

raises Range otherwise.

Cost Graph: So O(1) work and span.

In other words, constant time access

to elements (unlike lists).

length

length <x0, …, xn-1> ≅ n .

Cost Graph: Again, O(1) work and span.

length

length <x0, …, xn-1> ≅ n .

Cost Graph: Again, O(1) work and span.

Question: How could one achieve this?

length

length <x0, …, xn-1> ≅ n .

Cost Graph: Again, O(1) work and span.

Question: How could one achieve this?

Answer: Keep track of length explicitly

in the underlying representation of sequences.

map

map f <x0,…,xn-1> ≅ <f x0 ,…, f xn-1>

Cost Graph:
G1G0 Gn-1

...

Here Gi is the cost graph for evaluating f(xi).

If f(x) has O(1) work and span for all x, then

map f <x0,…,xn-1> has O(n) work & O(1) span.

reduce

Recall the type:

That is more restrictive than the type of foldr was:

reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

foldr : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

Let’s explore that.

reduce

reduce g z <x0,…,xn-1> ≅ x0ʘ⋯ʘ xn-1ʘz

We assume that g is associative, meaning

g(g(x,y),w) ≅ g(x,g(y,w)), for all values x,y,w

of the correct type. So no parentheses are needed on

the right, where we represent g by the infix operator ʘ.

[In 15-210 you will generally assume as well
that z is an identity (also called a zero) for g, meaning

g(x,z) ≅ x ≅ g(z,x), for all values x of the correct type.]

reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

reduce g z <x0,…,xn-1> ≅ x0ʘ⋯ʘ xn-1
reduce g z <> ≅ z

Then:

reduce

reduce g z <x0,…,xn-1> ≅ x0ʘ⋯ʘ xn-1ʘz

We assume that g is associative, meaning

g(g(x,y),w) ≅ g(x,g(y,w)), for all values x,y,w

of the correct type. So no parentheses are needed on

the right, where we represent g by the infix operator ʘ.

[In 15-210 you will generally assume as well
that z is an identity (also called a zero) for g, meaning

g(x,z) ≅ x ≅ g(z,x), for all values x of the correct type.

We do that sometimes in 15-150 but it can be useful to
allow more general z (thus mimicking a list foldr).]

reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

reduce

reduce g z <x0,…,xn-1> ≅ x0ʘ⋯ʘ xn-1ʘz

x0 x1 x2 x3 xn-1 z

Cost Graph:

ʘ ʘ ʘ

ʘ ʘ

ʘ

(forking abbreviated)

⋯

⋯

reduce

reduce g z <x0,…,xn-1> ≅ x0ʘ⋯ʘ xn-1ʘz

x0 x1 x2 x3 xn-1 z

Cost Graph:

ʘ ʘ ʘ

ʘ ʘ

ʘ

(forking abbreviated)

⋯

⋯

If g is constant time on all arguments,

O(log(n)) levels)

then reduce g z <x0,…,xn-1>

has O(n) work and O(log(n)) span.

mapreduce

mapreduce f z g <x0,…,xn-1>

≅

(f x0) ʘ ⋯ ʘ (f xn-1) ʘ z

mapreduce combines map and reduce:

So, if f and g have O(1) work and span on all

arguments, then mapreduce f z g <x0,…,xn-1>

has O(n) work and O(log(n)) span.

(here we again represent g by the infix operator ʘ)

filter

filter p s ≅ s’,

with s’a sequence consisting of all xi in s

such that p(xi) ≅ true . The order of

retained elements in s’is the same as in s.

If p has O(1) work and span on all arguments,

then filter p s has O(n) work and

O(log(n)) span (this is not obvious; you will

learn more in 15-210).

filter

One possible implementation that has

O(log(n)) span (but O(nlog(n)) work):

fun filter p =

let

val nothing = empty()

fun keep x =

if p x then singleton x

else nothing

in

mapreduce keep nothing append

end These are also sequence functions.

filter

One possible implementation that has

O(log(n)) span (but O(nlog(n)) work):

fun filter p =

let

val nothing = empty()

fun keep x =

if p x then singleton x

else nothing

in

mapreduce keep nothing append

end

append has O(1) spansingleton x ≅ <x>

Example (recall also Lecture 1):

fun sum (s : int Seq.seq) : int =

Seq.reduce (op +) 0 s

type row = int Seq.seq

type room = row Seq.seq

fun count (class : room) : int =

sum (Seq.map sum class)

(Here we are assuming a structure Seq

ascribing to signature SEQUENCE.)

Example (recall also Lecture 1):

fun sum (s : int Seq.seq) : int =

Seq.reduce (op +) 0 s

type row = int Seq.seq

type room = row Seq.seq

fun count (class : room) : int =

sum (Seq.map sum class)

Let value c:room contain m rows of length n each.

What are the work and span of evaluating count(c)?

Example (recall also Lecture 1):

fun sum (s : int Seq.seq) : int =

Seq.reduce (op +) 0 s

type row = int Seq.seq

type room = row Seq.seq

fun count (class : room) : int =

sum (Seq.map sum class)

Answer: O(nm) work and O(log(n)+log(m)) span.

Let value c:room contain m rows of length n each.

What are the work and span of evaluating count(c)?

To see that, construct a cost graph.

Suppose c = <row1, …, rowm>:

sum row1 sum rowm

sum
This subgraph represents

the summation over the results

of the previous summations.

⋯

Answer: O(nm) work and O(log(n)+log(m)) span.

To see that, construct a cost graph.

Suppose c = <row1, …, rowm>:

sum row1 sum rowm

sum
This subgraph represents

the summation over the results

of the previous summations.

⋯

Answer: O(nm) work and O(log(n)+log(m)) span.

sequence passed to
sum contains m integers

each row contains n integers

(Recall that sum has linear work and logarithmic span.)

Example (recall also Lecture 1):

fun sum (s : int Seq.seq) : int =

Seq.reduce (op +) 0 s

type row = int Seq.seq

type room = row Seq.seq

fun count (class : room) : int =

sum (Seq.map sum class)

We could also have implemented count as:

val count : room -> int =

Seq.mapreduce sum 0 (op +)

That is all.

Please have a good Carnival!

See you next Tuesday, when we will

talk about lazy evaluation.

	Title.pdf
	15-150Principles of Functional Programming

	End.pdf
	That is all.

	Title.pdf
	15-150Principles of Functional Programming

	End.pdf
	That is all.

