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Lessons:
• Context-Free Grammar

– Derivation

– Context-Free Language

• Abstract Syntax Tree (AST)

• Parsing (Operator-Precedence & Recursive-Descent)

• Awareness of some subtleties



Language Hierarchy
Class of Languages Recognizers Applications

Regular Finite Automata Tokenization

Context-Free
Nondeterministic

automata
with one stack

Syntax checking

Context-Sensitive
Linear-bounded

automata Some simple
type-checking

Unrestricted Turing Machines
General

Computation



Big Picture



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)

tokens

Maybe something like:

datatype token = LAMBDA | LPAREN | RPAREN
| ID of string | INT of int | ... 

token is some datatype defined within a compiler.



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)

tokens
tokenizer

token is some datatype defined within a compiler.

A tokenizer groups characters together into 
meaningful tokens, perhaps using a regular 
expression matcher.

(ID “fact”)   LPAREN (INT 3)   RPAREN …
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user keystrokes 
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(ID “fact”)   LPAREN (INT 3)   RPAREN …



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)

tokens

expressions

tokenizer Regular Expressions can be useful
(ID “fact”)   LPAREN (INT 3)   RPAREN …

The compiler has an internal datatype to represent 
“expressions”, perhaps called exp, maybe like this:

datatype exp =   Var of string | Int of int 
| App of exp * exp | ...



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)

tokens (ID “fact”)   LPAREN (INT 3)   RPAREN …

expressions App(Var “fact”, Int 3)  … 

tokenizer

parser

Regular Expressions can be useful

The compiler has an internal datatype to represent 
“expressions”.   A parser assembles tokens into meaningful 
expressions, generally with the aid of a context-free 
grammar (creating parsers can be automated, similarly as 
we could create regular expression matchers automatically).



Abstract Syntax Tree (AST)
We can think of the declaration

datatype exp =   Var of string | Int of int 
| App of exp * exp | ...

as defining operator-operand trees.
They are called abstract syntax trees.

For instance, we can visualize  App(Var “fact”, Int 3)
as App A parser produces ASTs.

A typechecker and evaluator
can then traverse them.Var “fact” Int 3



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)

tokens

expressions App(Var “fact”, Int 3)  … 

tokenizer

parser

Regular Expressions can be useful

Context-Free Grammars can be useful
(ID “fact”)   LPAREN (INT 3)   RPAREN …



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)

tokens

expressions App(Var “fact”, Int 3)  … 

typed expressions App(...) : int  …

tokenizer

parser

type checker

Regular Expressions can be useful

Context-Free Grammars can be useful
(ID “fact”)   LPAREN (INT 3)   RPAREN …



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)

tokens

expressions App(Var “fact”, Int 3)  … 

typed expressions App(...) : int  …

values 6 …

tokenizer

parser

type checker

evaluator

Regular Expressions can be useful

Context-Free Grammars can be useful
(ID “fact”)   LPAREN (INT 3)   RPAREN …



Syntax Charts for Programming 
Languages

Let’s use the following abbreviations:

P
E
M
Q

stands for
stands for
stands for
stands for

Program
Expression
Match
Pattern

(of course, there are lots more …)



Syntax for SML (partial)

P    E; P
This means:  A “program” is either (i) empty or (ii) an expression,

followed by a semi-colon, followed by a program (recursive!).



Syntax for SML (partial)

P    E; P

E  E + E  E * E  ...
 E andalso E  ...
 (case E of M)  ...

Comment:  This description is only syntax, not type-checking.

This means:  An “expression” could be an arithmetic expression
composed of two subexpression, or similarly a logical expression,
or a case expression involving an expression and a match, or … 



Syntax for SML (partial)

P    E; P

E  E + E  E * E  ...
 E andalso E  ...
 (case E of M)  ...

M  Q  E  Q  E | M

“|” in SML

This means:  A “match” consists of one or more instances of
Q  E separated by SML’s | bar
(recall that  Q stands for “pattern”).

“” in description
of possibilities



Syntax for SML (partial)

P    E; P

E  E + E  E * E  ...
 E andalso E  ...
 (case E of M)  ...

M  Q  E  Q  E | M



Alternate Notation: 
Backus Naur Form (BNF)

P ::=    E; P

E ::= E + E  E * E  ...
 E andalso E  ...
 (case E of M)  ...

M ::= Q  E  Q  E | M



Alternate Notation: 
Backus Naur Form (BNF)

P ::=    E; P

E ::= E + E  E * E  ...
 E andalso E  ...
 (case E of M)  ...

M ::= Q  E  Q  E | M

::= instead of .



Or use flow charts.  These are from the back of 
Paulson’s “ML for the Working Programmer”:



Context Free Grammars
We saw three formats for describing (some of)  the syntax of SML:

• Expansion rules  (using  )
• BNF (using ::= )
• Flow charts

“context-free” means that one can make an expansion without 
worrying about the surrounding symbols (e.g., whether and how the 

original E is part of some larger expression).

The grammar tells us how to expand a symbol (such as E)
in different ways (for instance, as E + E).

Each such possibility is called a rule.

(would not be true for type-checking)

These are three different ways of presenting a
context-free grammar for (some of) the syntax of SML.



Context-Free Grammars

• Formal definition of context-free grammar.
• Language L(G) associated with context-

free grammar G.
• Examples.
• Abstract syntax trees.
• Parser for a simple grammar.



Context-Free Grammar (Definition)

1. An alphabet  of terminals.
2. A set V of non-terminals.
3. A start symbol in V (often it is the symbol S).
4. A set of expansion rules, each of the form:

A context-free grammar G is specified by:

( and V are disjoint.)

N  w,

with  N  V and  w    V.
(In other words, N is a single non-terminal, and
w consists of 0 or more terminals and non-terminals.)



Context-Free Grammar (Definition)

1. An alphabet  of terminals.
2. A set V of non-terminals.
3. A start symbol in V (often it is the symbol S).
4. A set of expansion rules, each of the form:

A context-free grammar G is specified by:

( and V are disjoint.)

N  w,

with  N  V and  w    V.
(In other words, N is a single non-terminal, and
w consists of 0 or more terminals and non-terminals.)

(finitely-many)

(finite)

finite

finite

^

^



Derivations (1 step)

Suppose  and  are two strings of terminals 
and non-terminals, i.e.,     V .

We say that  is derivable from  in one step,
and write  1  if the following holds:

There exist strings      V  and
a rule N   in the grammar, such that

     and      .

(In other words,  may be obtained from  by using a single
expansion rule on one non-terminal N appearing in .)



Derivations (0 or more steps)

Again, suppose     V .

We say  is derivable from  in zero or more
steps, and write    if either  =  or there is
a sequence of 1-step derivations from  to :

 1  1  1 ⋯ n 1 

(Notation:  Many authors write  to mean 1 

and * to mean  , but the notation here
is more consistent with what you are used to.)  



Language of a
Context-Free Grammar

The language L(G) consists of all finite-length
strings over the alphabet  that are derivable
from the start symbol S:

L(G)  =      S  .

Let G be a grammar, with terminal alphabet ,
non-terminals V, and start symbol S.



Example #1

G:  = a, b
V = S, A

rules: S  AbA
A   (empty string)

A  a
A  aA



Example #1

G:  = a, b
V = S, A

rules: S  AbA
A   (empty string)

A  a
A  aA

It is usually enough to write the rules with “or bars”,
and specify  and S.  The rest is implicit.



Example #1 (abbreviated)
G:  = a, b

(It is implicit that V = S, A.)

S  AbA
A    a  aA



Example #1 (abbreviated)
G:  = a, b S  AbA

A    a  aA

Here is a sample derivation of a string in L(G):
S  1 AbA  1  abA  1  abaA 1 aba. 

Here is a rightmost derivation:  S 1 AbA 1 Aba 1 aba.

Here is a different leftmost derivation:  S 1 AbA 1 abA 1 aba.

(It is implicit that V = S, A.)

Called a leftmost derivation since each step expands
the current leftmost non-terminal.



Example #1 (abbreviated)
G:  = a, b

(It is implicit that V = S, A.)

S  AbA
A    a  aA

What is L(G)?
(We have seen that aba  L(G).)



Example #1 (abbreviated)
G:  = a, b

(It is implicit that V = S, A.)

S  AbA
A    a  aA

What is L(G)?
(We have seen that aba  L(G).)

Set of all finite strings over 
containing exactly one b.

Answer: 



Ambiguity
• The previous grammar G is said to be ambiguous

because a string in its language has more than one 
leftmost (or rightmost) derivation.

• Ambiguity is undesirable:  A parser might want to 
produce an operator-operand tree for expressions by 
scanning input and performing a leftmost derivation.  
Ambiguity means the parse is not inherently unique.

• Deciding whether a grammar is ambiguous is 
uncomputable in general, but in a specific setting 
one may be able to design a provably unambiguous 
grammar.



Example #1 (revisited)
G:  = a, b S  AbA

A    a  aA

Here is an unambiguous grammar G’
such that L(G’) = L(G):

(unambiguous means each string in L(G’) has a unique leftmost derivation)



Example #1 (revisited)
G:  = a, b S  AbA

A    a  aA

Here is an unambiguous grammar G’
such that L(G’) = L(G):

G’:

 = a, b
S  AbA
A    aA

(unambiguous means each string in L(G’) has a unique leftmost derivation)

(The class nicely came up with this.) 



Example #1 (revisited)
G:  = a, b S  AbA

A    a  aA

Here is a different unambiguous grammar G’
such that L(G’) = L(G):

G’:

 = a, b
S  b  bA  Ab  AbA
A  a  aA

(unambiguous means each string in L(G’) has a unique leftmost derivation)



Regular and Context-Free Languages
Let  be a given alphabet.
Let L be a subset of *.

We say that L is regular if L = L(r) 
for some regular expression r.

Recall:

We say that L is context-free if L = L(G) 
for some context-free grammar G.

We now also can define:

(finite strings over )



Regular and Context-Free Languages
Let  be a given alphabet.

The languages L = , L = , and L = a, with a,
corresponding to the base cases of regular expressions
are context-free.
(Exercise: Exhibit a context-free grammar for each L.)  

The class of context-free languages is closed under
alternation (union), concatenation, and Kleene Star.
(Exercise: To prove this, exhibit context-free grammars.)

Thus: Every regular language is context-free.





Example #1 (re-revisited)
G:  = a, b S  AbA

A    a  aA

Here is a regular expression r
such that L(r) = L(G):



Example #1 (re-revisited)
G:  = a, b S  AbA

A    a  aA

Here is a regular expression r
such that L(r) = L(G):

r = a*ba*



Some Languages
• Regular:

• Context-Free, but not Regular:

• Context-Free, but not the language of any 
unambiguous context-free grammar:

• Not Context-Free:

{an | n  0 mod 3, n  0}

{anbn | n  0}

{anbncn | n  0}

{anbmcmdn | n,m  0}  {anbncmdm | n,m  0}
Hopcroft & Ullman, Introduction to Automata Theory, Languages, and Computation, 1979.



Pumping Lemmas
• One approach for showing that a language is 

not regular (or is not context-free) is to use a 
so-called pumping lemma.

• A pumping lemma is an assertion that a 
(non-finite) language must contain infinitely 
many strings of a certain form.

• One uses the pumping lemma to show that 
the form contradicts the language definition 
(and so the language cannot be in the class 
of languages covered by the pumping lemma).



A Pumping Lemma for Regular 
Languages

Let L be an infinite regular language.

Then there exist strings , , , such that 

•    (i.e.,  is not the empty string)
• k  L for every k  0.

(The second bullet says language L must contain strings 
with arbitrarily many repetitions of  between  and .)

[There exist stronger pumping lemmas.]



Example #2
G:  = a, b S   aSb

L(G) = {anbn | n  0}(Implicitly V = S.)

Can you use the pumping lemma to show that L(G) is not regular?

Recall:  The pumping lemma says L(G) must contain 
all the strings k, k  0, for some , , , with   .



Example #2
G:  = a, b S   aSb

L(G) = {anbn | n  0}(Implicitly V = S.)

Can you use the pumping lemma to show that L(G) is not regular?

Recall:  The pumping lemma says L(G) must contain 
all the strings k, k  0, for some , , , with   .

Now do a case analysis on how , ,  might 
overlap a string in L(G), and you will find that 
pumping  creates strings outside the language.



Example #3
G:  = a, b S   aSa  bSbV = S

What is L(G)?



Example #3
G:  = a, b S   aSa  bSbV = S

What is L(G)?
Answer: L(G) = R    ∗

= all even length palindromes over .

Comment:  L is not regular.
(A stronger pumping lemma is useful to show that.)

(R means “reverse of ”)



Example #3
G:  = a, b S   aSa  bSbV = S

What is L(G)?
Answer: L(G) = R    ∗

= all even length palindromes over .

How to change G to include odd length palindromes?



Example #3
G:  = a, b S   aSa  bSbV = S

What is L(G)?
Answer: L(G) = R    ∗

= all even length palindromes over .

How to change G to include odd length palindromes?

S   a  b  aSa  bSb



Big Picture
user keystrokes 

chars (stream/list) f  a  c  t  (  3  )  … 
(atp)

tokens

expressions App(Var “fact”, Int 3)  … 

typed expressions App(...) : int  …

values 6 …

tokenizer

parser

type checker

evaluator

Regular Expressions can be useful

Context-Free Grammars can be useful
(ID “fact”)   LPAREN (INT 3)   RPAREN …



Parsers
• Top down recursive descent

– Useful for LL(k)  grammars: left-to-right parsing, construct 
a leftmost derivation with k-character lookahead.

• Bottom up operator precedence shift reduce
– Useful for some LR(1) grammars: left-to-right parsing, 

construct rightmost derivation in reverse,1-character 
lookahead.

• Compiler compilers

• You will learn a lot more in a compilers course



Example #4  (a CFG for /+ precedence)

E   T   E + T

(n means any integer)

T   F   T ∗ F
F   n   (E)



Example #4  (a CFG for /+ precedence)

E   T   E + T

(n means any integer)

T   F   T ∗ F
F   n   (E)

3+4∗(2+5)

E  1 E+T 1  T+T  1  F+T 1 3+T 
1 3+T∗F 1  3+F∗F 1  3+4∗F 1 3+4∗(E)
1 3+4∗(E+T) 1  ⋯  1  3+4∗(2+5)

has unique leftmost derivation 



Example #4  (a CFG for /+ precedence)

E   T   E + T
T   F   T ∗ F
F   n   (E)

3+4∗(2+5)

E  1 E+T 1  T+T  1  F+T 1 3+T 
1 3+T∗F 1  3+F∗F 1  3+4∗F 1 3+4∗(E)
1 3+4∗(E+T) 1  ⋯  1  3+4∗(2+5)

+

+

3

4

2 5has unique leftmost derivation 



Example #4  (a CFG for /+ precedence)

E   T   E + T
T   F   T ∗ F
F   n   (E)

3+4∗(2+5)

E  1 E+T 1  E+T∗F 1  E+T∗(E) 1 E+T∗(E+T)
1 E+T∗(E+F) 1  E+T∗(E+5) 1  E+T∗(T+5) 

1 E+T∗(F+5) 1 E+T∗(2+5) 1 ⋯ 3+4∗(2+5)

+

+

3

4

2 5has unique rightmost derivation 



Parsers
• Top down recursive descent

– Useful for LL(k)  grammars: left-to-right parsing, construct 
a leftmost derivation with k-character lookahead.

• Bottom up operator precedence shift reduce
– Useful for some LR(1) grammars: left-to-right parsing, 

construct rightmost derivation in reverse,1-character 
lookahead.

• Compiler compilers

• You will learn a lot more in a compilers course



E   E + E  E ∗ E  n

3+4∗5

+

3

4 5

3+(4∗5)should parse as if

Example #5 (shift-reduce operator precedence)



Example #5 (shift-reduce operator precedence)

●3+4∗5
Rule Input Stack (grows rightward)

(● indicates input read left-to-right)

(empty)

E   E + E  E ∗ E  n



Example #5 (shift-reduce operator precedence)

●3+4∗5
Rule Input Stack (grows rightward)

(● indicates input read left-to-right)

(empty)

E  3 3●+4∗5 3

E   E + E  E ∗ E  n

Read 3, use a grammar rule and push onto stack.



Example #5 (shift-reduce operator precedence)

●3+4∗5
Rule Input Stack (grows rightward)

(● indicates input read left-to-right)

(empty)

E  3 3●+4∗5 3
3+●4∗5 3 +

E   E + E  E ∗ E  n

Read +, observe that there is no prior operator
on stack, so push + onto stack.



Example #5 (shift-reduce operator precedence)

●3+4∗5
Rule Input Stack (grows rightward)

(● indicates input read left-to-right)

(empty)

E  3 3●+4∗5 3
3+●4∗5 3 +
3+4●∗5 3 + 4E  4

E   E + E  E ∗ E  n

Read 4, use a grammar rule and push onto stack.



Example #5 (shift-reduce operator precedence)

●3+4∗5
Rule Input Stack (grows rightward)

(empty)

E  3 3●+4∗5 3
3+●4∗5 3 +
3+4●∗5 3 + 4

3+4∗●5 3 + 4 

E  4

E   E + E  E ∗ E  n

(If the operator was + again instead of ∗, would first reduce
stack using grammar rule for +, then push the new + onto stack.)

Read ∗, observe that it binds more tightly than
operator + already on stack, so push ∗ onto stack.



Example #5 (shift-reduce operator precedence)

●3+4∗5
Rule Input Stack (grows rightward)

(empty)

E  3 3●+4∗5 3
3+●4∗5 3 +
3+4●∗5 3 + 4

3+4∗●5 3 + 4 
3+4∗5● 53 + 4 

E  4

E  5

E   E + E  E ∗ E  n

(● indicates input read left-to-right)

Read 5, use a grammar rule and push onto stack.



Example #5 (shift-reduce operator precedence)

Input Stack (grows rightward)

3+4∗5● 53 + 4 
No more unread input, so can reduce the stack:

E   E + E  E ∗ E  n

Rule



Example #5 (shift-reduce operator precedence)

Input Stack (grows rightward)

3+4∗5● 53 + 4 
No more unread input, so can reduce the stack:

3 + 

4 5

E   E + E  E ∗ E  n

E  E∗E

Rule



Example #5 (shift-reduce operator precedence)

Input Stack (grows rightward)

3+4∗5● 53 + 4 
No more unread input, so can reduce the stack:

3 + 

4 5

E  E+E
+

3

4 5

E   E + E  E ∗ E  n

Rule

E  E∗E



Parsers
• Top down recursive descent

– Useful for LL(k)  grammars, left-to-right parsing, construct 
a leftmost derivation with k-character lookahead.

• Bottom up operator precedence shift reduce
– Useful for some LR(1) grammars: left-to-right parsing, 

construct rightmost derivation in reverse,1-character 
lookahead.

• Compiler compilers

• You will learn a lot more in a compilers course



Recursive Descent Parsing

One parsing function for each nonterminal,
one clause for each possible expansion rule.

Basic Idea:



Recursive Descent Parsing

One parsing function for each nonterminal,
one clause for each possible expansion rule.

Basic Idea:

Issue:   Left Recursion

If we write parseE for E, then it would instantly
call itself recursively, leading to infinite loop.

Eliminate the recursion by rewriting the grammar rules:
E   nE
E    +nE

(changes associativity)

E   E + E   n (n means any integer)



Example #6 (simplified lambda calculus)

G:  = (implicit in the rules and tokens below)

E   X.E   (E E)   X
V = E, X (with E as start symbol)

X   any token for a nonempty alphanumeric string

datatype token = LAMBDA | LPAREN | RPAREN 
| ID of string | DOT

datatype exp =   Fun of string * exp
| App of exp * exp 
| Var of string



Example #6 (simplified lambda calculus)

(x.x  y)For instance:

Tokenizes to: LPAREN, LAMBDA, ID("x"), 
DOT, ID("x"), ID("y"), RPAREN

Parses to: App(Fun("x", Var "x"), Var "y")

App

Fun Var "y"

"x" Var "x"

which is this AST:



CPS version of the parser
exception ParseError

(* parseExp : token list -> (exp * token list -> 'a) -> 'a
REQUIRES: true
ENSURES:  (parseExp T k) ==> k(E,T2) if T  T1@T2 

such that 
T1 is derivable in the grammar with
abstract syntax E;

raises ParseError otherwise.
*)

(* parse : token list -> exp
REQUIRES: true
ENSURES:  parse(T) returns E if T is derivable in the 

grammar with abstract syntax E;
raises ParseError otherwise.

*)



CPS version of the parser
fun parseExp ((ID x)::ts) k = k(Var x, ts) E   X



CPS version of the parser
fun parseExp ((ID x)::ts) k = k(Var x, ts)

| parseExp (LPAREN::ts) k = 
parseExp ts (fn (e1, t1) => 

parseExp t1 
(fn (e2, RPAREN::t2) => k(App(e1,e2), t2)

| _ => raise ParseError))

E   (E E)



CPS version of the parser
fun parseExp ((ID x)::ts) k = k(Var x, ts)

| parseExp (LPAREN::ts) k = 
parseExp ts (fn (e1, t1) => 

parseExp t1 
(fn (e2, RPAREN::t2) => k(App(e1,e2), t2)

| _ => raise ParseError))

| parseExp (LAMBDA::(ID x)::DOT::ts) k =
parseExp ts (fn (e, ts') => k(Fun(x,e), ts'))

E   X.E



CPS version of the parser
fun parseExp ((ID x)::ts) k = k(Var x, ts)

| parseExp (LPAREN::ts) k = 
parseExp ts (fn (e1, t1) => 

parseExp t1 
(fn (e2, RPAREN::t2) => k(App(e1,e2), t2)

| _ => raise ParseError))

| parseExp (LAMBDA::(ID x)::DOT::ts) k =
parseExp ts (fn (e, ts') => k(Fun(x,e), ts'))

| parseExp _ _ = raise ParseError

(* parse : token list -> exp *)

fun parse tokens =
parseExp tokens (fn (e, nil) => e

| _ => raise ParseError)



Direct version of the parser

The continuations are not really doing much,
so the direct version looks very similar.

Instead of having values bound to variables
as function arguments, one binds them
explicitly in let expressions.

See the code posted online.



That is all.

Have a good Wednesday & Lab.

See you Thursday.

We will discuss computability.
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