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https://en.wikipedia.org/wiki/Entscheidungsproblem

The negative answer to the Entscheidungsproblem was then given 

by Alonzo Church in 1935–36 (Church's theorem) and independently 

shortly thereafter by Alan Turing in 1936 (Turing's proof).

The work of both Church and Turing was heavily influenced by Kurt Gödel's 

earlier work on his incompleteness theorem.

Church proved that there is no computable function which decides for two 

given λ-calculus expressions whether they are equivalent or not.   He relied 

heavily on earlier work by Stephen Kleene.

Turing reduced the question of the existence of a 'general method' which 

decides whether any given Turing Machine halts or not (the halting 

problem) to the question of the existence of an 'algorithm' or 'general 

method' able to solve the Entscheidungsproblem.

The Entscheidungsproblem is a challenge posed by 

David Hilbert and Wilhelm Ackermann in 1928.

https://en.wikipedia.org/wiki/Entscheidungsproblem


Lessons:

• Decision Questions and Procedures

• Decidability

– Halting Problem

– Diagonalization

– Reduction

• Semi-Decidability

• Some Computability Properties



Language Hierarchy

Class of Languages Recognizers Applications

Regular Finite Automata Tokenization

Context-Free
Nondeterministic

automata

with one stack
Syntax checking

Context-Sensitive
Linear-bounded

automata
Some simple

type-checking

Unrestricted Turing Machines
General

Computation



Some Computational Questions

• Can I win this chess game from this position?

• Does this graph have a cycle consisting of 10  

different edges?

• Is this SML expression well-typed?

• Does this SML expression reduce to a value?



Properties

Domain Problem Instance Property

SML expressions a specific e

SML expressions a specific e For some t, e:t.

graphs a specific graph G
G contains a cycle

with 10 edges

chess boards
a specific chess board

(arrangement of pieces)
white can win

For some v, e   v.



Decision Procedure

Definition

Let P be a property on some domain D.

(we mean a type 

domain here)

We also assume that for every element x in D,

property P either holds or does not hold, i.e.,

there is no third possibility.

However, computing whether the property holds

can be an issue, as we will see.  There exists

the third possibility that we will not obtain an answer.



Decision Procedure

Definition

Let P be a property on some domain D.

i. f(x)   true if P holds for instance x

ii. f(x)   false if P does not hold for x

iii. f(x) returns a value for all x in D.

A decision procedure for P is an SML function

f : D -> bool such that:



Decision Procedure

Definition

Let P be a property on some domain D.

f : D -> bool such that:

i. f(x)   true if P holds for instance x

ii. f(x)   false if P does not hold for x

iii. f(x) returns a value for all x in D.

(We state condition (iii) explicitly for emphasis;

we will change it later.)

A decision procedure for P is an SML function



Decision Procedure

Definition

Let P be a property on some domain D.

A decision procedure for P is an SML function

f : D -> bool such that:

i. f(x)   true if P holds for instance x

ii. f(x)   false if P does not hold for x

iii. f(x) returns a value for all x in D.

• The task of deciding whether property P holds for 
arbitrary x in D is a decision problem.

• When f exists as above we say that P is decidable.



Example

Domain Problem Instance Property P

regexp * string a specific (r,s) s  L(r)

Property P is decidable.

The regular expression acceptor (with the code that
avoids infinite looping for Star(r))

provides a decision procedure:

fun f (r,s) = accept r s



Not all Properties are Decidable

Domain Problem Instance Property P

(int->int) * int a specific (g,x)

Property HALT is not decidable.

Deciding P is called the Halting Problem.

We will write HALT to mean this P.

Let us prove this fact from the definitions.

g(x)   v,
for some value v.



Theorem HALT is not decidable.

Suppose otherwise, i.e., suppose there exists

H : (int->int)*int -> bool such that

i. H(g,x)   true if g(x) is valuable 

ii. H(g,x)   false if g(x) is not valuable

iii. H(g,x) returns a value for all (g,x).

Now define:

fun loop () = loop ()

fun diag (x:int):int =

if H(diag,x) then loop () else 0

We will see that this reasoning leads to a contradiction.
So H cannot exist, establishing the theorem.

Proof:



Consider now H(diag,0).

By property (iii) of H,  this expression reduces to either

true or false.   Let us examine each possibility.

H(diag,0)   true Let’s evaluate diag(0):

diag(0)   if H(diag,0) then loop() else 0

loop()

So H says diag(0) is valuable, but it actually loops forever.

H(diag,0)   false Again, let’s evaluate:

diag(0)   if H(diag,0) then loop() else 0

0

So H says diag(0) is not valuable, but it actually reduces to 0.

For both possibilities we obtain a contradiction.
QED



Proof Techniques

• The previous proof technique is known as 

a diagonalization argument.  It sets up an 

adversary who does the opposite of what 

is expected (very similar to Cantor’s proof 

that the reals are uncountable).

• Another common proof technique is a 

reduction argument (to be discussed next).



Reduction Argument

Let P and Q be two properties.

We write fP to mean a decision procedure for P

and fQ to mean a decision procedure for Q.

OBSERVE:

If P is reducible to Q and if fP  is

known not to exist, then fQ cannot exist.

provides a proof roadmap

We say that P is reducible to Q if, given fQ, one 

could implement fP by calling fQ on the result of 

transforming the arguments passed to fP

(intuitively, if fP = fQ o i for some total function i).



We might think that HALT is undecidable merely 

because there are infinitely many possible 
arguments x, so let’s look at a variant:

Domain Problem Instance Property P

int -> int a specific g
g(0)   v,

for some value v.

Property HALT0 is also not decidable.

We will write HALT0 to mean this P.

Let us prove this fact by reducing HALT to HALT0.



Theorem HALT0 is not decidable.

Proof:

Let Z mean a decision procedure for HALT0.

Let H mean a decision procedure for HALT. 

We proved earlier than H does not exist.

We will show that if Z existed, then we could define H.

Consequently, Z cannot exist. 

fun H (g:int->int, x:int) : bool =

Z ( fn (y:int) => g x )

Observe that H is total since Z is.   Moreover,

H(g,x) returns true iff  Z(fn …) returns true iff

(fn y => g x)(0) is valuable iff  g(x) is valuable.

So H would indeed be a decision procedure for HALT. QED

By reduction, reducing HALT to HALT0.



Comment

Be careful about the direction of the reduction.

For instance, one could also define

fun Z (g : int -> int) : bool = H(g, 0)

That would be a reduction of HALT0 to HALT.

It would not help us prove that HALT0 is

undecidable.



Comment

Be careful about the direction of the reduction.

For instance, one could also define

fun Z (g : int -> int) : bool = H(g, 0)

That would be a reduction of HALT0 to HALT.

It would not help us prove that HALT0 is

undecidable.

However, the two reductions together tell us that 

HALT and HALT0 are “equivalently undecidable”.



A Computability Hierarchy

The phrase “equivalently undecidable”

suggests degrees of undecidability.

Let us explore that idea a little.



Recall: Decision Procedure

Definition

Let P be a property on some domain D.

i. f(x)   true if P holds for instance x

ii. f(x)   false if P does not hold for x

iii. f(x) returns a value for all x in D.

A decision procedure for P is an SML function

f : D -> bool such that:

We will now remove condition (iii)

by changing condition (ii).



Semi-Decision Procedure

Another definition

Let P be a property on some domain D.

i. f(x)   true if P holds for instance x

ii. f(x)   false OR f(x) diverges

if P does not hold for x.

A semi-decision procedure for P is an SML function

f : D -> bool such that:

In other words, f must return true for instances x that satisfy P, but 

can either return false or diverge for instances that do not satisfy P.

(“diverge” means “does not return a value”)



Semi-Decision Procedure

Another definition

Let P be a property on some domain D.

i. f(x)   true if P holds for instance x

ii. f(x)   false OR f(x) diverges

if P does not hold for x.

A semi-decision procedure for P is an SML function

f : D -> bool such that:

• When f exists as above we say that P is semi-decidable.



Theorem HALT is semi-decidable.

Proof:

Here is a semi-decision procedure for HALT:

fun S (g:int->int, x:int) : bool = (g x; true)

QED



Theorem HALT is semi-decidable.

Proof:

Here is a semi-decision procedure for HALT:

fun S (g:int->int, x:int) : bool = (g x; true)

Theorem HALT0 is semi-decidable.

Proof:

fun S0 (g:int->int) : bool = (g 0; true)

QED

QED



Co-Semi-Decidability

Yet another definition

Let P be a property on some domain D.

We say that P is co-semi-decidable
if ¬P is semi-decidable. 

For example, the property “g(0) diverges” is

co-semi-decidable since HALT0 is semi-decidable.

(¬P means the Boolean negation of P.)



A Picture of Decidability Classes

decidable
semi-decidableco-semi-decidable

e:t
e   ve diverges

in SML

f  g

Let us prove that the intersection is as drawn,

and that equivalence lies in none of the classes drawn.



We will prove some other results along the 

way.   Doing so will help achieve our goal, as 

well as build some intuition about the 

“calculus of undecidability”.



Theorem Let P be a property on some domain D.

P is decidable if and only if ¬P is decidable.

Proof:

Let fP be a decision procedure for P.

We can define a decision procedure g¬P for ¬P:

fun g¬P(x) = not(fP(x))

g¬P is total since fP  is, and decides ¬P correctly

since fP  decides P correctly.

(The other direction of the “iff” is similar.)
QED



Theorem Let P be a property on some domain D.

If P is both semi-decidable and co-semi-decidable,

then P is in fact decidable.

Proof:

For a given problem instance x in D, h

interleaves evaluation of fP(x) and g¬P(x).

At least one of these expressions is valuable.
If fP(x)returns a value before g¬P(x)does, then

h(x)==> fP(x).  Otherwise, h(x)==> not(g¬P(x)).

Let fP be a semi-decision procedure for P

and let g¬P be a semi-decision procedure for ¬P.

We define a decision procedure  h : D -> bool for P:

QED



Theorem HALT0 is not co-semi-decidable.

Proof:

We saw earlier that HALT0  is semi-decidable.

If HALT0  were also co-semi-decidable, then the

previous theorem would imply that HALT0  is

decidable, which we proved earlier is not the case.

QED



Let us now consider function equivalence.

We assume the pure subset of SML

that does not include mutation or exceptions.

Domain:

Problem Instance:

Property:

(int -> int) * (int -> int)

a specific pair (f,g)

We will write EQUIV to mean this property.

f  g



Theorem EQUIV is neither semi-decidable

nor co-semi-decidable.
Proof:

1. Suppose Eq is a semi-decision procedure for EQUIV.

Then s below would be a semi-decision procedure for

¬HALT0 , contradicting HALT0 being not co-semi-decidable:

2. If notEq is a semi-decision procedure for ¬EQUIV,

then s’ would be a semi-decision procedure for ¬HALT0:

fun s (h:int->int):bool =

Eq (fn (y:int) => (h 0; y),

fn (y:int) => loop ())

fun s’ (h:int->int):bool =

notEq (fn (y:int) => (h 0; y),

fn (y:int) => y)

(Reduction arguments make sense for semi-decidability.)

QED



One more comment

The (un)decidability properties we discussed 

today do not depend on our working with 

SML functions.

The same properties hold if we were to examine

the abstract syntax trees of written code

or if we were to work in a different programming

language or at the assembly level or even at

the transistor level of a computer.



Please have a good weekend.

See you Tuesday.

We will discuss automated game playing.

That is all.
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