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Modular Framework for the 

following kinds of games:

• 2-player (alternate turns)

• deterministic (no dice)

• perfect information (no hidden state)

• zero-sum (I win, you lose; ties ok)

• finitely-branching (maybe even finite)



Modular Framework for the 

following kinds of games:

• 2-player (alternate turns)

• deterministic (no dice)

• perfect information (no hidden state)

• zero-sum (I win, you lose; ties ok)

• finitely-branching (maybe even finite)

• Examples:  tic-tac-toe, connect4, …



Example:   Nim

• Take 1, 2, or 3 pieces of chocolate

• Alternate turns

• Player who leaves an empty table loses



Game Trees

• Nodes represent current state of game

• Edges represent possible moves

• A given level corresponds to a given 

player, alternating turns

– Our players:     Maxie and    Minnie



Game Trees

• Nodes represent current state of game

• Edges represent possible moves

• A given level corresponds to a given 

player, alternating turns

– Our players:     Maxie and    Minnie

Important:  These trees are not predefined datatypes,

but instead are implicit representations of possible game

evolutions.  We will represent them functionally, expanding

nodes as necessary using sequences to represent the

result of possible moves.



A Nim Game Tree

4

Start with 4 pieces of chocolate



A Nim Game Tree
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A Nim Game Tree
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Maxie wins!



A Nim Game Tree

MAXIEMAXIE

MinnieMinnie
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Maxie wins!Maxie wins!Maxie wins!Maxie wins!

Minnie wins!Minnie wins!



Nim game tree with leaf values

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

means Maxie wins, assign value +1+1

means Minnie wins, assign value -1-1
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Now compute interior node values:
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Now compute interior node values:
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Maxie can win!

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE
+1+1

+1+1 +1+1 +1+1

-1-1 -1-1 -1-1

+1+1

+1+1 -1-1

-1-1

-1-1

-1-1 +1+1

+1+1
4

1

take 3take 3

take 1take 1

The other two initial Maxie moves
      would allow Minnie to win.



Estimators
• In practice, trees are too large to visit leaves.
• Instead: 

– expand tree to some depth,
– use game-specific estimator to assign values 

(not just ±1) at bottom-most nodes explored.

• Backchain mini-max values as before.
• Repeat after each actual move.
• Issue:  horizon effect.



Estimators
• In practice, trees are too large to visit leaves.
• Instead: 

– expand tree to some depth,
– use game-specific estimator to assign values 

(not just ±1) at bottom-most nodes explored.

Our simplified presentation associates the estimator with GAME.
More generally, one would make it PLAYER-dependent.

Either way, our automated PLAYERs assume
optimal play by both Maxie and Minnie relative to the 

estimator.



Nim has perfect estimator

Player making move can win for sure iff

n mod 4  ≠ 1

(n is number of pieces)

Why?



Nim has perfect estimator

Player making move can win for sure iff

n mod 4  ≠ 1

(n is number of pieces)

Why?

Player and opponent must each take 1, 2, or 3 pieces.

Given player can ensure 4 pieces total are taken as sum 

of pieces taken first by opponent then by player.  Thus 

player can repeatedly leave opponent with 4k+1 pieces 

(some k).    Eventually opponent must take last piece.



Maxie can win!

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE

MinnieMinnie

MAXIEMAXIE
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Modular Framework

• Game : GAME (e.g., Nim : GAME)

• Player : PLAYER (includes a Game)

• Referee :  GO (glues 2 Players to play)

• Will have automated and human players.

• Will write automated players as functors that 

expect a Game.  Code plays without knowing 

Game details, except implicitly via estimator.



Modular Framework

GAME

MiniMax

AlphaBeta

Human

PLAYER

Referee

VerboseRef

(rough picture; there will be a few more administrative layers)

structures signature functors functorssignature

Nim

Connect4

Checkers

Chess



GAME  Signature
signature GAME =

sig

end



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

end

The concrete type player models a two-person game.

We call one player  Minnie and the other Maxie,

because we think of them as minimizing and maximizing

values associated with nodes in a game tree

(these values are based on some approximate estimator).



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

end

The concrete datatype outcome models the idea that

either one of the players wins or there is a draw, once a game ends.



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

datatype status = Over of outcome | In_play  (* concrete *)

end

Finally, a game is either Over (with a given outcome) or still In_play.

The concrete datatype status models this aspect of the game.



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

datatype status = Over of outcome | In_play  (* concrete *)

type state (* abstract *)

type move (* abstract *)

end

The types state and move depend on the particular game

being played, so we leave them abstract in the signature.



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

datatype status = Over of outcome | In_play  (* concrete *)

type state (* abstract *)

type move (* abstract *)

val start : state

end

This line of the signature says that every particular game

implementation must specify a value representing the start state of the game.



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

datatype status = Over of outcome | In_play  (* concrete *)

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

end

(REQUIRE that the state be In_play

ENSURE that the move sequence is non-empty and all moves valid)



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

datatype status = Over of outcome | In_play (* concrete *)

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

val make_move : state * move -> state

end

(REQUIRE that the move be valid at the state.)



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

datatype status = Over of outcome | In_play  (* concrete *)

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

val make_move : state * move -> state

val status : state -> status

val player : state -> player

end

These functions are called “views”.  They allow a user to see
some information about the abstract type state.   (Here, the

player function returns the player whose turn it is to make a move.)



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

datatype status = Over of outcome | In_play (* concrete *)

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

val make_move : state * move -> state

val status : state -> status

val player : state -> player

datatype est = Definitely of outcome | Guess of int

val estimate : state -> est

end

A more general approach would place

the estimator in a separate module.  It

is here for presentational simplicity. 

(* concrete *)

(CAUTION: estimate need not provide useful info)

(REQUIRE that the state be In_play)



GAME  Signature
signature GAME =

sig

datatype player = Minnie | Maxie             (* concrete *)

datatype outcome = Winner of player | Draw   (* concrete *)

datatype status = Over of outcome | In_play (* concrete *)

type state (* abstract *)

type move (* abstract *)

val start : state

val moves : state -> move Seq.seq

val make_move : state * move -> state

val status : state -> status

val player : state -> player

datatype est = Definitely of outcome | Guess of int

val estimate : state -> est

. . . (* functions to create string representations *)

end

(* concrete *)



structure Nim : GAME =

struct

end

Nim  Structure



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

end

Nim  Structure

The types player, outcome, and status

were specified in the GAME signature,

so we need to write them, i.e., implement them, exactly as there.



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

end

Nim  Structure

We now implement the abstract type state as a particular datatype 

constructor expecting a pair.  The pair specifies how many pieces are 

available and whose turn it is to take one or more pieces.

Recall:   The player whose turn it is must take 1, 2, or 3 pieces, but not more 

pieces than are available.   A player who takes all available pieces loses.

Why use constructor State rather than merely the pair  int * player ?

Ascription is transparent (one reason for that is to make it easier for us in 

this course to see what is happening when testing the code).

However, we do not want anyone messing with the internal representation 
even though they can see it.  Since State is not specified in the signature, 

no one can pattern match on it.



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

end

Nim  Structure

We implement the abstract type move as a

datatype that specifies how many pieces to take.



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

end

Nim  Structure

We can make this be any positive integer.

We could even make it be an argument

to a functor that creates a Nim structure.

For simplicity, we make it 15 here.



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

end

Nim  Structure

Create all valid moves at a given state (as a  move Seq.seq)

corresponding to taking 1 piece, 2 pieces, or 3 pieces,

but no more than are still available.

(We may assume there is at least 1 piece available.)



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie 

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

end

Nim  Structure

We may assume the move is valid, so can simply subtract

the number of pieces taken.  And we change whose turn it is.



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie 

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

end

Nim  Structure

(Type est was specified in the signature, so we need to write it as there.)



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie 

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =

if n mod 4 = 1 then Definitely (Winner (flip p))

else Definitely (Winner p)

end

Nim  Structure

Recall that Nim has a perfect estimator (generally a game will not).



structure VeryDumbNim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie 

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

fun estimate _ = Guess 0

end

VeryDumbNim  Structure

Of course, there is no requirement that the estimator be useful.

We could trivialize it!



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

val start = State (15, Maxie)

fun moves (State (n, _)) =

Seq.tabulate (fn k => Move (k+1)) (Int.min (n,3))

fun flip Maxie = Minnie 

| flip Minnie = Maxie

fun make_move (State (n, p), Move k)= State (n-k, flip p)

datatype est = Definitely of outcome | Guess of int

fun estimate (State (n, p)) =

if n mod 4 = 1 then Definitely (Winner (flip p))

else Definitely (Winner p)

end

Nim  Structure



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

. . .

end

Nim  Structure  (cont)

We have not yet implemented the two views, so let us do that now:



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

. . .

fun player (State (_, p)) = p

end

Nim  Structure  (cont)

The player view of a state returns the player whose turn it is.



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

. . .

fun player (State (_, p)) = p

fun status (State (0, p)) = Over (Winner p)

| status _ = In_play

end

Nim  Structure  (cont)

The status view of a state checks whether there are any pieces remaining.

If so, the game is In_play.

If not, then the previous player must have taken all the remaining pieces,
Therefore, the current player is the winner.



structure Nim : GAME =

struct

datatype player = Minnie | Maxie

datatype outcome = Winner of player | Draw

datatype status = Over of outcome | In_play

datatype state = State of int * player

datatype move = Move of int

. . .

fun player (State (_, p)) = p

fun status (State (0, p)) = Over (Winner p)

| status _ = In_play

. . . (* functions to create string representations *)

end

Nim  Structure  (cont)



PLAYER  Signature

signature PLAYER =

sig

structure Game : GAME  (* parameter *)

val next_move : Game.state -> Game.move

end

We simply wrap one layer around the GAME signature,

now requiring a function that decides what

move to make given a particular game state.



Human Player

functor HumanPlayer (G : GAME) : PLAYER =

struct

end

The functor expects a GAME and returns a PLAYER,

meaning:

The code we write must provide a structure
satisfying the PLAYER signature

(think of that as an interface for playing games)
that will work with any game G

satisfying the GAME signature.



Human Player

functor HumanPlayer (G : GAME) : PLAYER =

struct

structure Game = G

(* read : unit -> string option *)

(* parse : G.state * string option -> G.move option *)

fun next_move s = 

let 

val _ = ...  (* ask human to enter move *)

in

(case parse(s, read()) of

SOME m => m

| NONE => next_move s) (* for instance *)

end

end



Recall:  Game as tree of alternating player moves

7 6 3 9 1 6 2 4 1 1 3 5 3 8 2 6 5 2 1 2 3 9 7 2 99 1 0

start board

move 1
move 2

move 3

board     after move 1



Recall:  Optimal Play from Mini-Max

7 6 3 9 1 6 2 4 1 1 3 5 3 8 2 6 5 2 1 2 3 9 7 2 99 1 0

Maxie

Minnie

Maxie



Recall:  Optimal Play from Mini-Max

7 6 3 9 1 6 2 4 1 1 3 5 3 8 2 6 5 2 1 2 3 9 7 2 99 1 0

Maxie

Minnie

Maxie
7 9 4

4

Need to explore these subtrees

to determine root’s value and

thereby optimal initial move for Maxie



SETTINGS   &   PLAYER

signature PLAYER =

sig

structure Game : GAME   (* parameter *)

val next_move : Game.state -> Game.move

end

signature SETTINGS =

sig

structure Game : GAME   (* parameter *)

val depth : int

end



Functorize MiniMax Player

functor MiniMax (Settings : SETTINGS) : PLAYER =
struct

structure Game = Settings.Game
structure G = Game

type edge = G.move * G.est
fun emv (m,v) = m
fun evl (m,v) = v

An edge represents a move from the current state,

along with a value attributed to the resulting state:

make_move (s,m) ≅ t

s

t

m

v(v is t’s MiniMax value computed recursively)



Functorize MiniMax Player

functor MiniMax (Settings : SETTINGS) : PLAYER =
struct

structure Game = Settings.Game
structure G = Game

type edge = G.move * G.est
fun emv (m,v) = m
fun evl (m,v) = v

(* leq : G.est * G.est -> bool *)
fun leq (x, y) = . . .

(* max, min : edge * edge -> edge *)
fun max (e1, e2) = if leq (evl e2, evl e1) then e1 else e2
fun min (e1, e2) = if leq (evl e1, evl e2) then e1 else e2

(* choose : G.player -> edge Seq.seq -> edge *)
fun choose G.Maxie = Seq.reduce1 max
| choose G.Minnie = Seq.reduce1 min



Mini-Max at a Maxie Node

Maxie

moves

m1 m2 mk…

…
mk-1

v

v1 v2 vk-1 vk

v = max{v1,…,vk}



mutual recursion

Maxie

evaluate
search

moves
m1 m2 mk…

…
mk-1

v

v1 v2 vk-1 vk

v = max{v1,…,vk}

search
search hands evaluate a best edge (mi,vi).

evaluate returns best v to its calling search.

(m,v)=(mi,vi)
with i index maximizing vi



Functorize  MiniMax  Player

(* search : int -> G.state -> edge                   *)

(* REQUIRES: depth d > 0 and G.status(s) == In_play. *)

fun search d s =

choose (G.player s)

(Seq.map

(fn m => (m, evaluate (d-1) (G.make_move(s,m))))

(G.moves s))

(* evaluate : int -> G.state -> G.est *)

(* REQUIRES : d ≥ 0.                   *)

and evaluate d s =

(case (G.status s, d) of

(G.Over(v), _) => G.Definitely(v)

| (G.In_play, 0) => G.estimate(s)

| (G.In_play, _) => evl (search d s))

(cont)



Functorize  MiniMax  Player

(* search : int -> G.state -> edge                   *)

(* REQUIRES: depth d > 0 and G.status(s) == In_play. *)

fun search d s =

choose (G.player s)

(Seq.map

(fn m => (m, evaluate (d-1) (G.make_move(s,m))))

(G.moves s))

(* evaluate : int -> G.state -> G.est *)

(* REQUIRES : d ≥ 0.                   *)

and evaluate d s =

(case (G.status s, d) of

(G.Over(v), _) => G.Definitely(v)

| (G.In_play, 0) => G.estimate(s)

| (G.In_play, _) => evl (search d s))

val next_move = emv o (search Settings.depth)

(cont)

Check whether the game is over!

(Don’t rely on estimator to detect this.)



Functorize  MiniMax  Player

(* search : int -> G.state -> edge                   *)

(* REQUIRES: depth d > 0 and G.status(s) == In_play. *)

fun search d s =

choose (G.player s)

(Seq.map

(fn m => (m, evaluate (d-1) (G.make_move(s,m))))

(G.moves s))

(* evaluate : int -> G.state -> G.est *)

(* REQUIRES : d ≥ 0.                   *)

and evaluate d s =

(case (G.status s, d) of

(G.Over(v), _) => G.Definitely(v)

| (G.In_play, 0) => G.estimate(s)

| (G.In_play, _) => evl (search d s))

select the value of the best edge

(cont)



Functorize  MiniMax  Player

(* search : int -> G.state -> edge                   *)

(* REQUIRES: depth d > 0 and G.status(s) == In_play. *)

fun search d s =

choose (G.player s)

(Seq.map

(fn m => (m, evaluate (d-1) (G.make_move(s,m))))

(G.moves s))

(* evaluate : int -> G.state -> G.est *)

(* REQUIRES : d ≥ 0.                   *)

and evaluate d s =

(case (G.status s, d) of

(G.Over(v), _) => G.Definitely(v)

| (G.In_play, 0) => G.estimate(s)

| (G.In_play, _) => evl (search d s))

val next_move = emv o (search Settings.depth)

select the move from the best edge

(cont)



Functorize  MiniMax  Player

(* search : int -> G.state -> edge                   *)

(* REQUIRES: depth d > 0 and G.status(s) == In_play. *)

fun search d s =

choose (G.player s)

(Seq.map

(fn m => (m, evaluate (d-1) (G.make_move(s,m))))

(G.moves s))

(* evaluate : int -> G.state -> G.est *)

(* REQUIRES : d ≥ 0.                   *)

and evaluate d s =

(case (G.status s, d) of

(G.Over(v), _) => G.Definitely(v)

| (G.In_play, 0) => G.estimate(s)

| (G.In_play, _) => evl (search d s))

val next_move = emv o (search Settings.depth)

This is the function specified in the PLAYER signature, accessible to the outside world.

(cont)



Functorize  MiniMax  Player

(* search : int -> G.state -> edge                   *)

(* REQUIRES: depth d > 0 and G.status(s) == In_play. *)

fun search d s =

choose (G.player s)

(Seq.map

(fn m => (m, evaluate (d-1) (G.make_move(s,m))))

(G.moves s))

(* evaluate : int -> G.state -> G.est *)

(* REQUIRES : d ≥ 0.                   *)

and evaluate d s =

(case (G.status s, d) of

(G.Over(v), _) => G.Definitely(v)

| (G.In_play, 0) => G.estimate(s)

| (G.In_play, _) => evl (search d s))

val next_move = emv o (search Settings.depth)

end (* functor MiniMax *)

(cont)



TWO_PLAYERS   &   GO

signature GO =

sig

val go : unit -> unit

end

signature TWO_PLAYERS =

sig

structure Maxie : PLAYER   (* parameter *)

structure Minnie : PLAYER   (* parameter *)

sharing Maxie.Game = Minnie.Game

end



Functorize  Playing, using a Referee

functor Referee (P : TWO_PLAYERS) : GO =

struct

structure G = P.Maxie.Game

structure H = P.Minnie.Game

(* run : G.state -> string *)

fun run s =

(case (G.status s, G.player s) of

(G.Over(v), _) => G.outcome_to_string(v)

| (G.In_play, G.Maxie) =>

run (G.make_move (s, P.Maxie.next_move s))

| (G.In_play, G.Minnie) =>

run (H.make_move (s, P.Minnie.next_move s)))

fun go () = print (run (G.start) ^ "\n" )

end



Human vs depth-3 MiniMax for Nim
structure NimHuman = HumanPlayer(Nim)    (* Nim : GAME *)

structure NimSet3 : SETTINGS =
struct

structure Game = Nim
val depth = 3

end

structure Nim3MM = MiniMax(NimSet3)

structure HvM : TWO_PLAYERS =
struct

structure Maxie = NimHuman
structure Minnie = Nim3MM

end

structure Nim_RefHvM = Referee(HvM)

Nim_RefHvM.go()



That is all.

See you Thursday.

We will review the semester. 
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